Previous |  Up |  Next

Article

Keywords:
non-Newtonian fluid; Couette flow; Poiseuille flow; slip boundary condition
Summary:
We consider the flow of a class of incompressible fluids which are constitutively defined by the symmetric part of the velocity gradient being a function, which can be non-monotone, of the deviator of the stress tensor. These models are generalizations of the stress power-law models introduced and studied by J. Málek, V. Průša, K. R. Rajagopal: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907–1924. We discuss a potential application of the new models and then consider some simple boundary-value problems, namely steady planar Couette and Poiseuille flows with no-slip and slip boundary conditions. We show that these problems can have more than one solution and that the multiplicity of the solutions depends on the values of the model parameters as well as the choice of boundary conditions.
References:
[1] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model incorporating some of the mechanical and biomechanical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5 (2003), 183-218. DOI 10.1080/10273660412331317415 | MR 2158290
[2] Anand, M., Rajagopal, K., Rajagopal, K. R.: A model for the formation and lysis of blood clots. Pathophysiology of Homeostasis and Thrombosis 34 (2005), 109-120. DOI 10.1159/000089931
[3] Burgers, J. M.: Mechanical considerations---model systems---phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity J. M. Burgers Nordemann Publishing Company New York (1935).
[4] Drazin, P. G., Reid, W. H.: Hydrodynamic Stability (2nd ed.). Cambridge University Press (Cambridge), (2004). MR 2098531
[5] Lawson, J., Rajagopal, K.: Regulation of hemostatic system function by biochemical and mechanical factors. In: Modeling of Biological Materials F. Mollica, L. Preziosi, K. R. Rajagopal Birkhäuser Boston (2007), 179-210. MR 2341232
[6] Málek, J., Průša, V., Rajagopal, K. R.: Generalizations of the Navier-Stokes fluid from a new perspective. Int. J. Eng. Sci. 48 (2010), 1907-1924. DOI 10.1016/j.ijengsci.2010.06.013 | MR 2778752 | Zbl 1231.76073
[7] Maxwell, J. C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A 157 (1866), 26-78.
[8] Noll, W. A.: A new mathematical theory of simple materials. Arch. Ration. Mech. Anal. 48 (1972), 1-50. DOI 10.1007/BF00253367 | MR 0445985 | Zbl 0271.73006
[9] Oldroyd, J. G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A 200 (1950), 523-541. DOI 10.1098/rspa.1950.0035 | MR 0035192 | Zbl 1157.76305
[10] Oldroyd, J. G.: Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. A 245 (1958), 278-297. DOI 10.1098/rspa.1958.0083 | MR 0094085
[11] Rajagopal, K. R.: On implicit constitutive theories. Appl. Math. 48 (2003), 279-319. DOI 10.1023/A:1026062615145 | MR 1994378 | Zbl 1099.74009
[12] Rajagopal, K. R.: On implicit constitutive theories for fluids. J. Fluid. Mech. 550 (2006), 243-249. DOI 10.1017/S0022112005008025 | MR 2263984 | Zbl 1097.76009
[13] Rajagopal, K. R., Srinivasa, A. R.: On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59 (2008), 715-729. DOI 10.1007/s00033-007-7039-1 | MR 2417387 | Zbl 1149.76007
[14] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thromb. Res. 84 (1996), 225-236. DOI 10.1016/S0049-3848(96)00182-X
[15] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.: A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results. Thromb. Res. 84 (1996), 333-344. DOI 10.1016/S0049-3848(96)00197-1
Partner of
EuDML logo