[1] Anand, M., Rajagopal, K., Rajagopal, K. R.:
A model incorporating some of the mechanical and biomechanical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 5 (2003), 183-218.
DOI 10.1080/10273660412331317415 |
MR 2158290
[2] Anand, M., Rajagopal, K., Rajagopal, K. R.:
A model for the formation and lysis of blood clots. Pathophysiology of Homeostasis and Thrombosis 34 (2005), 109-120.
DOI 10.1159/000089931
[3] Burgers, J. M.: Mechanical considerations---model systems---phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity J. M. Burgers Nordemann Publishing Company New York (1935).
[4] Drazin, P. G., Reid, W. H.:
Hydrodynamic Stability (2nd ed.). Cambridge University Press (Cambridge), (2004).
MR 2098531
[5] Lawson, J., Rajagopal, K.:
Regulation of hemostatic system function by biochemical and mechanical factors. In: Modeling of Biological Materials F. Mollica, L. Preziosi, K. R. Rajagopal Birkhäuser Boston (2007), 179-210.
MR 2341232
[7] Maxwell, J. C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A 157 (1866), 26-78.
[10] Oldroyd, J. G.:
Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. A 245 (1958), 278-297.
DOI 10.1098/rspa.1958.0083 |
MR 0094085
[14] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.:
A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. I. The model description. Thromb. Res. 84 (1996), 225-236.
DOI 10.1016/S0049-3848(96)00182-X
[15] Zarnitsina, V. I., Pokhilko, A. V., Ataullakhanov, F. I.:
A mathematical model for spatio-temporal dynamics of intrinsic pathway of blood coagulation. II. Results. Thromb. Res. 84 (1996), 333-344.
DOI 10.1016/S0049-3848(96)00197-1