Previous |  Up |  Next

Article

Title: Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics (English)
Author: Oană, Alexandru
Author: Neagu, Mircea
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 2
Year: 2012
Pages: 137-145
Summary lang: English
.
Category: math
.
Summary: In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics. (English)
Keyword: jet polymomentum Hamiltonian of electrodynamics
Keyword: Cartan canonical connection
Keyword: Maxwell-like and Einstein-like equations
MSC: 53C07
MSC: 53C80
MSC: 70S05
idZBL: Zbl 06165040
idMR: MR3032809
.
Date available: 2013-01-28T10:55:32Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143144
.
Reference: [1] Asanov, G. S.: Jet extension of Finslerian gauge approach.Fortschr. Phys., 38, 8, 1990, 571-610, Zbl 0744.53035, MR 1076500, 10.1002/prop.2190380802
Reference: [2] Atanasiu, Gh., Neagu, M.: Canonical nonlinear connections in the multi-time Hamilton geometry.Balkan J. Geom. Appl., 14, 2, 2009, 1-12, Zbl 1186.53038, MR 2539737
Reference: [3] Christodoulou, D., Francaviglia, M., Tulczyjew, W. M.: General relativity as a generalized Hamiltonian system.J. Gen. Relativ. Gravit., 10, 1979, 567-579, Zbl 0448.58006, MR 0541653, 10.1007/BF00757208
Reference: [4] Chruściński, D.: Hamiltonian structure for classical electrodynamics of a point particle.Rep. Math. Phys., 41, 1, 1998, 13-48, Zbl 0932.70016, MR 1617898, 10.1016/S0034-4877(98)80181-X
Reference: [5] Coriasco, S., Ferraris, M., Francaviglia, M.: Non linear relativistic electrodynamics.Geometria, Fisica-Matematica e outros Ensaios -- volume in honour of A. Ribeiro Gomes, 1998, 101-118, Coimbra,
Reference: [6] Dickey, L. A.: Solitons Equations and Hamiltonian systems.1991, Advanced Series in Mathematical Physics 12, World Scientific, Singapore, Chapter 17: Multi-Time Lagrangian and Hamiltonian Formalism.. MR 1147643
Reference: [7] Eells, J., Lemaire, L.: A report on harmonic maps.Bull. London Math. Soc., 10, 1978, 1-68, Zbl 0401.58003, MR 0495450, 10.1112/blms/10.1.1
Reference: [8] Francaviglia, M., Palese, M., Winterroth, E.: A new geometric proposal for the Hamiltonian description of classical field theories.Proc. of the 8th Int. Conf. ``DGA 2001 -- Differential Geometry and Its Applications", 2002, 415-423, Silesian University, MR 1978795
Reference: [9] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Covariant Hamiltonian field theory.1999, arXiv:hep-th/9904062v1.
Reference: [10] Gotay, M., Isenberg, J., Marsden, J. E., Montgomery, R.: Momentum maps and classical fields. Part I. Covariant field theory.2004, arXiv:physics/9801019v2 [math-ph]. MR 1188431
Reference: [11] Kanatchikov, I. V.: On quantization of field theories in polymomentum variables.AIP Conf. Proc., 453, 1, 1998, 356-367, Zbl 0982.81028, MR 1765516, 10.1063/1.57105
Reference: [12] Krupková, O.: Hamiltonian field theory.J. Geom. Phys., 43, 2002, 93-132, Zbl 1016.37033, MR 1919207, 10.1016/S0393-0440(01)00087-0
Reference: [13] Krupková, O.: Hamiltonian field theory revisited: A geometric approach to regularity.Proc. Colloq. Diff. Geom. ``Steps in Differential Geometry", 2001, 187-207, Debrecen University, Zbl 0980.35009, MR 1859298
Reference: [14] Krupková, O., Saunders, D. J.: Affine duality and Lagrangian and Hamiltonian systems.Int. J. Geom. Methods Mod. Phys., 8, 3, 2011, 669-697, MR 2807123, 10.1142/S0219887811005336
Reference: [15] Miron, R., Anastasiei, M.: The Geometry of Lagrange Spaces: Theory and Applications.1994, Kluwer Academic Publishers, Dordrecht, Zbl 0831.53001, MR 1281613
Reference: [16] Miron, R., Hrimiuc, D., Shimada, H., Sabău, S. V.: The Geometry of Hamilton and Lagrange Spaces.Kluwer Academic Publishers, Dordrecht, 2001, Zbl 1001.53053, MR 1839409
Reference: [17] Neagu, M.: Riemann-Lagrange Geometry on 1-Jet Spaces.2005, Matrix Rom, Bucharest,
Reference: [18] Neagu, M.: The geometry of autonomous metrical multi-time Lagrange space of electrodynamics.Int. J. Math. Math. Sci., 29, 1, 2002, 7-16, Zbl 1011.53053, MR 1892327, 10.1155/S0161171202011018
Reference: [19] Neagu, M., Udrişte, C., Oană, A.: Multi-time dependent sprays and $h$-traceless maps.Balkan J. Geom. Appl., 10, 2, 2005, 76-92, MR 2235108
Reference: [20] Oană, A., Neagu, M.: The local description of the Ricci and Bianchi identities for an $h$-normal $N$-linear connection on the dual 1-jet space $J^{1\ast}(T,M)$.2011, arXiv:1111.4173v1 [math.DG].. MR 3032809
Reference: [21] Oană, A., Neagu, M.: From quadratic Hamiltonians of polymomenta to abstract geometrical Maxwell-like and Einstein-like equations.2012, arXiv:1202.4477v1 [math-ph]. MR 3035882
Reference: [22] Sachs, R. K., Wu, H.: General Relativity for Mathematicians.1977, Springer-Verlag, New York, Heidelberg, Berlin, Zbl 0373.53001, MR 0503498
Reference: [23] Saunders, D. J.: The Geometry of Jet Bundles.1989, Cambridge University Press, New York, London, Zbl 0665.58002
Reference: [24] Udrişte, C., Matei, L.: Lagrange-Hamilton Theories (in Romanian).2008, Geometry Balkan Press, Bucharest,
.

Files

Files Size Format View
ActaOstrav_20-2012-2_6.pdf 452.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo