[1] Adams, R. A.:
Sobolev spaces. 1978, Academic Press,
Zbl 0347.46040
[2] Agarwal, R. P., O'Regan, D.:
An introduction to ordinary differential equations. 2008, Springer Verlag,
MR 2439721 |
Zbl 1158.34001
[5] Basdevant, J. L.:
Variational principles in Physics. 2010, Springer,
MR 2285636
[7] Binney, J., Tremain, S.: Galactic dynamics. 1994, Princeton University Press,
[8] Buck, B., (eds), V. A. Macaulay: Maximum Entropy in Action: A Collection of Expository Essays. 1991, Oxford University Press,
[9] Burghes, D. N., Graham, A.:
Introduction to Control Theory, Including Optimal Control. 1980, Wiley,
MR 0583584 |
Zbl 0428.93001
[10] Carlini, A., Frolov, V. P., Mensky, M. B., Novikov, I. D., Soleng, H. H.:
Time machines: the Principle of Self-Consistency as a consequence of the Principle of Minimal Action. Int. J. Mod. Phys. D, 4, 1995, 557-580,
DOI 10.1142/S0218271895000399 |
MR 1363650
[11] Carlini, A., Greensite, J.:
Square Root Actions, Metric Signature, and the Path-Integral of Quantum Gravity. Phys. Rev. D, 52, 1995, 6947-6964,
DOI 10.1103/PhysRevD.52.6947 |
MR 1375862
[13] Chandrasekhar, S.:
An Introduction to the Study of Stellar Structure. 1967, Dover publications,
MR 0092663
[15] Collins, G. W.: The fundamentals of stellar astrophysics. 1989, Freeman,
[16] Curtain, R. F., Pritchard, A. J.:
Functional analysis in modern applied mathematics. 1977, Academic Press,
MR 0479787 |
Zbl 0448.46002
[17] Emden, R.: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme. 1907, B. G. Teubner,
[18] Fiziev, P. P.:
Relativistic Hamiltonian with square root in the path integral formalism. Theor. Math. Phys., 62, 2, 1985, 123-130,
DOI 10.1007/BF01033521 |
MR 0783051
[20] Fowler, R. H.:
Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations. Proc. London Math. Soc., 13, 1914, 341-371,
MR 1577508
[21] Fowler, R. H.: The form near infinity of real, continuous solutions of a certain differential equation of the second order. Quart. J. Math., 45, 1914, 289-350,
[22] Fowler, R. H.: The solution of Emden's and similar differential equations. Monthly Notices Roy. Astro. Soc., 91, 1930, 63-91,
[24] Fox, C.:
An introduction to the calculus of variations. 1963, Cambridge University Press, Reprinted by Dover (1987).
MR 0919400
[25] Friedman, J. L., Louko, J., Winters-Hilt, S. N.:
Reduced phase space formalism for spherically symmetric geometry with a massive dust shell. Phys. Rev. D, 56, 1997, 7674-7691,
DOI 10.1103/PhysRevD.56.7674 |
MR 1603603
[26] García, P. L.:
The Poincaré-Cartan invariant in the calculus of variations. Symposia Mathematica, 14, 1974, 219-246,
MR 0406246 |
Zbl 0303.53040
[27] Garrett, B. C., Abusalbi, N., Kouri, D. J., Truhlar, D. G.:
Test of variational transition state theory and the least action approximation for multidimensional tunneling probabilities against accurate quantal rate constants for a collinear reaction involving tunneling into an excited state. J. Chem. Phys., 83, 1985, 2252-2258,
DOI 10.1063/1.449318
[28] Gelfand, I. M., Fomin, S. V.:
Calculus of variations. 2000, Dover,
Zbl 0964.49001
[29] Giachetta, G., Mangiarotti, L., Sardanashvily, G.:
Advanced classical field theory. 2009, World Scientific,
MR 2527556 |
Zbl 1179.81002
[30] Giaquinta, M., Hildebrandt, S.:
Calculus of variations I: The Lagrangian formalism. 1996, Springer Verlag,
MR 1368401
[33] Goldstein, H., Poole, C., Safko, J.:
Classical Mechanics, 3rd. ed. 2001, Addison-Wesley,
MR 0043608
[36] Gray, C. G., Poisson, E.:
When action is not least for orbits in general relativity. Am. J. Phys., 79, 1, 2011, 43-56,
DOI 10.1119/1.3488986
[37] Gray, C. G., Taylor, E. F.:
When action is not least. Am. J. Phys., 75, 5, 2007, 434-458,
DOI 10.1119/1.2710480
[39] Hand, L. N., Finch, J. D.: Analytical Mechanics. 1998, Cambridge University Press,
[41] Hermes, H., Lasalle, J. P.:
Functional analysis and time optimal control. 1969, Academic Press,
MR 0420366 |
Zbl 0203.47504
[42] Horedt, G. P.: Polytropes: Applications in astrophysics and related fields. 2004, Kluwer,
[44] José, J. V., Saletan, E. J.:
Classical Dynamics, a contemporary approach. 1998, Cambridge University Press,
MR 1640663 |
Zbl 0918.70001
[45] Kapustnikov, A. A., Pashnev, A., Pichugin, A.:
The canonical quantization of the kink--model beyond the static solution. Phys. Rev. D, 55, 1997, 2257-2264,
DOI 10.1103/PhysRevD.55.2257
[46] Klein, J. F.: Physical significance of entropy or of the second law. 2009, Cornell University Library,
[47] Krupková, O.:
The geometry of ordinary variational equations, Lecture Notes in Mathematics 1678. Springer Verlag, 1997,
MR 1484970
[48] Krupková, O., (eds.), D. J. Saunders:
Variations, geometry and physics. 2009, Nova Science Publishers,
MR 2490562 |
Zbl 1209.58002
[49] Lane, I. J. H.: On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment. Amer. J. Sci. and Arts, 4, 1870, 57-74,
[50] Lebedev, L. P., Cloud, M. J.:
The calculus of variations and functional analysis (with optimal control and applications in mechanics). 2003, World Scientific,
MR 2036504 |
Zbl 1042.49001
[51] Lucha, W., Schöberl, F. F.:
Relativistic Coulomb Problem: Energy Levels at the Critical Coupling Constant Analytically. Phys. Lett. B, 387, 1996, 573-576,
DOI 10.1016/0370-2693(96)01057-X
[53] Menotti, P.:
Hamiltonian structure of 2+1 dimensional gravity. Recent developments in general relativity, 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy (2000), 2002, 165-177, Springer,
MR 2016032 |
Zbl 1202.83095
[54] Moore, T. A.:
Getting the Most Action from the Least Action: A proposal. Am. J. Phys., 72, 4, 2004, 522-527,
DOI 10.1119/1.1646133
[56] Pars, L. A.:
An introduction to the calculus of variations. 1962, Heinemann, Reprinted by Dover (2010)..
MR 0147932 |
Zbl 0108.10303
[58] Rajaraman, R.:
Solitons and Instantons. 1988, North--Holland Publishing,
MR 0719693
[59] Ramond, P.: Field theory: A modern primer (Frontiers in Physics series Vol. 74). 2001, Westview Press,
[60] Razavy, M.:
Classical And Quantum Dissipative Systems. 2006, Imperial College Press,
MR 2218674
[63] Sagan, H.:
Introduction to the calculus of variations. 1992, Dover,
MR 1210325
[64] Simmons, G. F., Krantz, S. G.: Differential Equations: Theory, Technique, and Practice. 2006, McGraw-Hill,
[65] Smith, D.:
Variational methods in optimization. 1998, Dover,
Zbl 0918.49001
[66] Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., Herlt, E.:
Exact Solutions of Einstein's Field Equations. 2003, Cambridge University Press,
MR 2003646 |
Zbl 1057.83004
[68] Sussmann, H. J., Willems, J. C.:
$300$ years of optimal control: from the brachystochrone problem to the maximum principle. IEEE Control Systems, 17, 1997, 32-44,
DOI 10.1109/37.588098
[69] Taylor, E. F.:
Guest Editorial: A Call to Action. Am. J. Phys., 71, 5, 2003, 423-425,
DOI 10.1119/1.1555874
[70] Taylor, J. R.:
Classical mechanics. 2005, University Science Books,
Zbl 1075.70002
[71] Thornton, S. T., Marion, J. B.: Classical Dynamics of Particles and Systems. 2004, Brooks/Cole,
[72] Troutman, J. L.:
Variational Calculus and Optimal Control: Optimization With Elementary Convexity. 1996, Springer Verlag,
MR 1363262 |
Zbl 0865.49001
[73] Brunt, B. Van:
The calculus of variations. 2004, Springer Verlag,
MR 2004181
[74] Wang, Q. A.:
Maximum entropy change and least action principle for non equilibrium systems. Astrophysics and Space Sciences, 305, 2006, 273-281,
DOI 10.1007/s10509-006-9202-0
[75] Whittaker, E. T.:
A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th. ed. 1937, Dover,
MR 0010813
[78] Zaslavski, A. J.:
Turnpike properties in the calculus of variations and optimal control. 2006, Springer Verlag,
MR 2164615 |
Zbl 1100.49003
[79] Zeidler, E.: Nonlinear functional analysis and its applications, Vol. III: Variational methods and optimization. 1986, Springer Verlag,