Previous |  Up |  Next

Article

Keywords:
Clifford analysis; polynomially generalized Bers–Vekua operator; Dirac operator
Summary:
In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation.
References:
[1] Berglez, P.: Representation of pseudoanalytic functions in the space. More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005 (Begehr, H., Nicolosi, F., eds.), 2008, pp. 1119–1126. MR 1395232
[2] Berglez, P.: On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis. Math. Methods Appl. Sci. 33 (2010), 454–458. MR 2641622 | Zbl 1184.30038
[3] Bers, L.: Theory of Pseudo–analytic Functions. New York University, Institute for Mathematics and Mechanics, III, 187 p., 1953. MR 0057347 | Zbl 0051.31603
[4] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Res. Notes Math., vol. 76, Pitman, London, 1982. MR 0697564 | Zbl 0529.30001
[5] Delanghe, R., Brackx, F.: Hypercomplex function theory and Hilbert modules with reproducing kernel. Proc. London Math. Soc. 37 (3) (1978), 545–576. MR 0512025 | Zbl 0392.46019
[6] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions. Math. Appl., vol. 53, Kluwer Acad. Publ., Dordrecht, 1992. MR 1169463 | Zbl 0747.53001
[7] Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. Birkhäuser, Basel, 1990. MR 1096955 | Zbl 0850.35001
[8] Min, K., Daoshun, W.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford. J. Math. Anal. Appl. 374 (2011), 442–457. DOI 10.1016/j.jmaa.2010.08.015 | MR 2729233 | Zbl 1203.30056
[9] Min, K., Daoshun, W.: Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis. Math. Methods Appl. Sci. 34 (2011), 418–427. MR 2791483
[10] Min, K., Daoshun, W., Lin, D.: Solutions to polynomial generalized Bers–Vekua equations in Clifford analysis. Complex Anal. Oper. Theory 6 (2) (2012), 407–424. DOI 10.1007/s11785-011-0131-8 | MR 2899761
[11] Min, K., Jinyuan, D.: On integral representation of spherical $k$–regular functions in Clifford analysis. Adv. Appl. Clifford Algebras 19 (1) (2009), 83–100. DOI 10.1007/s00006-008-0067-x | MR 2485699
[12] Min, K., Khäler, U.: Riemann boundary value problems on the half space in Clifford analysis. Math. Methods Appl. Sci. (2012), doi:10.1002/mma.2557. MR 3021423
[13] Min, K., Khäler, U., Daoshun, W.: Riemann boundary value problems on the sphere in Clifford analysis. Adv. Appl. Clifford Algebras 22 (2) (2012), 365–390. DOI 10.1007/s00006-011-0308-2 | MR 2930700
[14] Sprössig, W.: On generalized Vekua–type problems. Adv. Appl. Clifford Algebras 11 (2001), 77–92. DOI 10.1007/BF03042210 | MR 2106712 | Zbl 1221.30118
[15] Vekua, I. N.: Generalized Analytic Functions. Pergamon Press, London, 1962. MR 0150320 | Zbl 0127.03505
[16] Yafang, G., Tao, Q., Jinyuan, D.: Structure of solutions of polynomial Dirac equations in Clifford analysis. Complex Variables Theory Appl. 49 (1) (2004), 15–21. DOI 10.1080/02781070310001634593
Partner of
EuDML logo