Previous |  Up |  Next

Article

Keywords:
spherical Rarita-Schwinger type operators; Cayley transformation; real projective space; Almansi-Fischer decomposition; Iwasawa decomposition
Summary:
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas.
References:
[1] Balinsky, A., Ryan, J.: Some sharp $L^2$ inequalities for Dirac type operators. SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. MR 2366908 | Zbl 1141.15026
[2] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London, 1982. MR 0697564 | Zbl 0529.30001
[3] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185 (2) (2001), 425–455. DOI 10.1006/jfan.2001.3781 | MR 1856273 | Zbl 1078.30041
[4] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations. Ann. Global Anal. Geom. 21 (2002), 215–240. DOI 10.1023/A:1014923601006 | MR 1896475 | Zbl 1025.58013
[5] Cnops, J., Malonek, H.: An introduction to Clifford analysis. Textos Mat. Sér. B (1995), vi+64. MR 1417718 | Zbl 0997.15501
[6] Dunkl, C., Li, J., Ryan, J., Van Lancker, P.: Some Rarita-Schwinger operators. submitted 2011, http://arxiv.org/abs/1102.1205
[7] Krausshar, R. S., Ryan, J.: Conformally flat spin manifolds, Dirac operators and automorphic forms. J. Math. Anal. Appl. 325 (2007), 359–376. DOI 10.1016/j.jmaa.2006.01.045 | MR 2273531 | Zbl 1107.30037
[8] Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8 (6) (2002), 535–563. DOI 10.1007/s00041-002-0026-1 | MR 1932745 | Zbl 1047.53023
[9] Porteous, I.: Clifford Algebra and the Classical Groups. Cambridge University Press, Cambridge, 1995. MR 1369094
[10] Ryan, J.: Iterated Dirac operators in $C^n$. Z. Anal. Anwendungen 9 (1990), 385–401. MR 1119539
[11] Ryan, J.: Clifford analysis on spheres and hyperbolae. Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. DOI 10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X | MR 1486528 | Zbl 0909.30007
[12] Ryan, J.: Dirac operators on spheres and hyperbolae. Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. MR 1679305 | Zbl 0894.30031
[13] Van Lancker, P.: Clifford Analysis on the Sphere. Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. MR 1627086 | Zbl 0896.15015
[14] Van Lancker, P.: Higher Spin Fields on Smooth Domains. Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. MR 1890463 | Zbl 1009.30029
[15] Van Lancker, P.: Rarita-Schwinger fields in the half space. Complex Var. Elliptic Equ. 51 (2006), 563–579. DOI 10.1080/17476930500482614 | MR 2230266 | Zbl 1117.30041
Partner of
EuDML logo