Previous |  Up |  Next

Article

Keywords:
telegraph equation; trigonometric wavelets; hermite interpolation; operational matrix of derivative
Summary:
A numerical technique is presented for the solution of second order one dimensional linear hyperbolic equation. This method uses the trigonometric wavelets. The method consists of expanding the required approximate solution as the elements of trigonometric wavelets. Using the operational matrix of derivative, we reduce the problem to a set of algebraic linear equations. Some numerical example is included to demonstrate the validity and applicability of the technique. The method produces very accurate results. An estimation of error bound for this method is presented and it is shown that in this method the matrix of coefficients is a sparse matrix.
References:
[1] Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.: Wavelet-like bases for the fast solution of second-kind integral equation. SIAM J. Sci. Comput. 14 (1993), 159-184. DOI 10.1137/0914010 | MR 1201316
[2] Chui, C. K., Mhaskar, H. N.: On trigonometric wavelets. Constr. Approx. 9 (1993), 167-190. DOI 10.1007/BF01198002 | MR 1215768 | Zbl 0780.42020
[3] Chui, C. K.: An Introduction to Wavelets. Academic Press, Boston 1992. MR 1150048 | Zbl 0925.42016
[4] Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations. In: Stability and Convergence, Math. Z. 215 (1994), 583-620. MR 1269492 | Zbl 0794.65082
[5] Dehghan, M.: On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer. Methods Partial Differential Equations 21 (2005), 24-40. DOI 10.1002/num.20019 | MR 2100298 | Zbl 1059.65072
[6] Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simulation 71 (2006), 16-30. DOI 10.1016/j.matcom.2005.10.001 | MR 2206903 | Zbl 1089.65085
[7] Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition. Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 447-450.
[8] Dehghan, M., Shokri, A.: A numerical method for solving the hyperbolic telegraph equation. Numer. Methods Partial Differential Equations 24 (2008), 1080-1093. DOI 10.1002/num.20306 | MR 2419709 | Zbl 1145.65078
[9] Dehghan, M., Lakestani, M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation. Numer. Methods Partial Differential Equations 25 (2009), 931-938. DOI 10.1002/num.20382 | MR 2526989 | Zbl 1169.65102
[10] Gao, J., Jiang, Y. L.: Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel. J. Comput. Appl. Math. 215 (2008), 242-259. DOI 10.1016/j.cam.2007.04.010 | MR 2400631
[11] Kress, R.: Linear Integral Equations. Springer, New York 1989. MR 1007594 | Zbl 1151.45301
[12] Lakestani, M., Dehghan, M.: The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets. Internat. J. Comput. Math. 83 (2006), 8-9, 685-694. DOI 10.1080/00207160601025656 | MR 2288405 | Zbl 1114.65090
[13] Lakestani, M., Razzaghi, M., Dehghan, M.: Semiorthogonal wavelets approximation for Fredholm integro-differential equations. Math. Prob. Engrg. (2006), 1-12. DOI 10.1155/MPE/2006/96184
[14] Lakestani, M., Saray, B. N.: Numerical solution of telegraph equation using interpolating scaling functions. Comput. Math. Appl. 60 (2010), 7, 1964-1972. DOI 10.1016/j.camwa.2010.07.030 | MR 2719716 | Zbl 1205.65288
[15] Lakestani, M., Jokar, M., Dehghan, M.: Numerical solution of nth-Order Integro-Differential equations using trigonometric wavelets. Numer. Math. Methods Appl. Sci. 34 (2011), 11, 1317-1329. DOI 10.1002/mma.1439 | MR 2839375
[16] Lapidus, L., Pinder, G. F.: Numerical Solution of Partial Differential Equations in Science and Engineering. Wiley, New York 1982. MR 0655597 | Zbl 0929.65056
[17] Lorentz, G. G.: Convergence theorems for polynomials with many zeros. Math. Z. 186 (1984), 117-123. DOI 10.1007/BF01215495 | MR 0735055 | Zbl 0524.42001
[18] Lorentz, G. G., Lorentz, R. A.: Mathematics from Leningrad to Austin. In: Selected Works In Real, Functional And Numerical Analysis, (1997). Zbl 0874.01013
[19] Mohanty, R. K., Jain, M. K., George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 72 (1996), 421-431. DOI 10.1016/0377-0427(96)00011-8 | MR 1406226
[20] Mohanty, R. K.: An unconditionally stable difference scheme for the one-space dimensional linear hyperbolic equation. Appl. Math. Lett. 17 (2004), 101-105. DOI 10.1016/S0893-9659(04)90019-5 | MR 2030658 | Zbl 1046.65076
[21] Mohanty, R. K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165 (2005), 229-236. DOI 10.1016/j.amc.2004.07.002 | MR 2137041 | Zbl 1070.65076
[22] Mohebbi, A., Dehghan, M.: High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer. Methods Partial Differential Equations 24 (2008), 1222-1235. DOI 10.1002/num.20313 | MR 2427188 | Zbl 1151.65071
[23] Petersdorff, T. V., Schwab, C.: Wavelet approximation for first kind integral equations on polygons. Numer. Math. 74 (1996), 479-516. DOI 10.1007/s002110050226 | MR 1414419
[24] Quak, E.: Trigonometric wavelets for hermite interpolation. J. Math. Comput. 65 (1996), 683-722. DOI 10.1090/S0025-5718-96-00719-3 | MR 1333324 | Zbl 0873.42024
[25] Shamsi, M., Razzaghi, M.: Solution of Hallen's integral equation using multiwavelets. Comput. Phys. Comm. 168 (2005), 187-197. DOI 10.1016/j.cpc.2005.01.016 | Zbl 1196.65203
[26] Shan, Z., Du, Q.: Trigonometric wavelet method for some elliptic boundary value problems. J. Math. Anal. Appl. 344 (2008), 1105-1119. DOI 10.1016/j.jmaa.2008.03.062 | MR 2426337 | Zbl 1149.65092
[27] Twizell, E. H.: An explicit difference method for the wave equation with extended stability range. BIT 19 (1979), 378-383. DOI 10.1007/BF01930991 | MR 0548617 | Zbl 0441.65066
Partner of
EuDML logo