[1] Alpert, B., Beylkin, G., Coifman, R., Rokhlin, V.:
Wavelet-like bases for the fast solution of second-kind integral equation. SIAM J. Sci. Comput. 14 (1993), 159-184.
DOI 10.1137/0914010 |
MR 1201316
[4] Dahmen, W., Prössdorf, S., Schneider, R.:
Wavelet approximation methods for pseudodifferential equations. In: Stability and Convergence, Math. Z. 215 (1994), 583-620.
MR 1269492 |
Zbl 0794.65082
[5] Dehghan, M.:
On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer. Methods Partial Differential Equations 21 (2005), 24-40.
DOI 10.1002/num.20019 |
MR 2100298 |
Zbl 1059.65072
[7] Dehghan, M.: Implicit collocation technique for heat equation with non-classic initial condition. Internat. J. Non-Linear Sci. Numer. Simul. 7 (2006), 447-450.
[9] Dehghan, M., Lakestani, M.:
The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation. Numer. Methods Partial Differential Equations 25 (2009), 931-938.
DOI 10.1002/num.20382 |
MR 2526989 |
Zbl 1169.65102
[10] Gao, J., Jiang, Y. L.:
Trigonometric Hermite wavelet approximation for the integral equations of second kind with weakly singular kernel. J. Comput. Appl. Math. 215 (2008), 242-259.
DOI 10.1016/j.cam.2007.04.010 |
MR 2400631
[12] Lakestani, M., Dehghan, M.:
The solution of a second-order nonlinear differential equation with Neumann boundary conditions using semi-orthogonal B-spline wavelets. Internat. J. Comput. Math. 83 (2006), 8-9, 685-694.
DOI 10.1080/00207160601025656 |
MR 2288405 |
Zbl 1114.65090
[13] Lakestani, M., Razzaghi, M., Dehghan, M.:
Semiorthogonal wavelets approximation for Fredholm integro-differential equations. Math. Prob. Engrg. (2006), 1-12.
DOI 10.1155/MPE/2006/96184
[15] Lakestani, M., Jokar, M., Dehghan, M.:
Numerical solution of nth-Order Integro-Differential equations using trigonometric wavelets. Numer. Math. Methods Appl. Sci. 34 (2011), 11, 1317-1329.
DOI 10.1002/mma.1439 |
MR 2839375
[16] Lapidus, L., Pinder, G. F.:
Numerical Solution of Partial Differential Equations in Science and Engineering. Wiley, New York 1982.
MR 0655597 |
Zbl 0929.65056
[18] Lorentz, G. G., Lorentz, R. A.:
Mathematics from Leningrad to Austin. In: Selected Works In Real, Functional And Numerical Analysis, (1997).
Zbl 0874.01013
[19] Mohanty, R. K., Jain, M. K., George, K.:
On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comput. Appl. Math. 72 (1996), 421-431.
DOI 10.1016/0377-0427(96)00011-8 |
MR 1406226
[21] Mohanty, R. K.:
An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165 (2005), 229-236.
DOI 10.1016/j.amc.2004.07.002 |
MR 2137041 |
Zbl 1070.65076
[22] Mohebbi, A., Dehghan, M.:
High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer. Methods Partial Differential Equations 24 (2008), 1222-1235.
DOI 10.1002/num.20313 |
MR 2427188 |
Zbl 1151.65071
[23] Petersdorff, T. V., Schwab, C.:
Wavelet approximation for first kind integral equations on polygons. Numer. Math. 74 (1996), 479-516.
DOI 10.1007/s002110050226 |
MR 1414419