Previous |  Up |  Next

Article

Keywords:
Finsler function; spray; projective equivalence; geodesic path; projective metrizability; Hilbert form
Summary:
The projective Finsler metrizability problem deals with the question whether a projective-equivalence class of sprays is the geodesic class of a (locally or globally defined) Finsler function. This paper describes an approach to the problem using an analogue of the multiplier approach to the inverse problem in Lagrangian mechanics.
References:
[1] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. 2000, Springer MR 1747675 | Zbl 0954.53001
[2] Crampin, M., Mestdag, T., Saunders, D.J.: The multiplier approach to the projective Finsler metrizability problem. Diff. Geom. Appl., 30, 6, 2012, 604-621 DOI 10.1016/j.difgeo.2012.07.004 | MR 2996856 | Zbl 1257.53105
[3] Crampin, M., Mestdag, T., Saunders, D.J.: Hilbert forms for a Finsler metrizable projective class of sprays. Diff. Geom. Appl., to appear
[4] Krupková, O., Prince, G.E.: Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations. Handbook of Global Analysis, 2008, 837-904, Elsevier MR 2389647 | Zbl 1236.58027
[5] Shen, Z.: Differential Geometry of Spray and Finsler Spaces. 2001, Kluwer MR 1967666 | Zbl 1009.53004
[6] Whitehead, J.H.C.: Convex regions in the geometry of paths. Quart. J. Math., 3, 1932, 33-42 DOI 10.1093/qmath/os-3.1.33 | Zbl 0004.13102
[7] Whitehead, J.H.C.: Convex regions in the geometry of paths -- addendum. Quart. J. Math., 4, 1933, 226-227 DOI 10.1093/qmath/os-4.1.226 | Zbl 0007.36801
Partner of
EuDML logo