Title:
|
On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE (English) |
Author:
|
Rohleder, Martin |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
107-127 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes. (English) |
Keyword:
|
singular ordinary differential equation of the second order |
Keyword:
|
time singularities |
Keyword:
|
unbounded domain |
Keyword:
|
asymptotic properties |
Keyword:
|
damped solutions |
Keyword:
|
oscillatory solutions |
MSC:
|
34A12 |
MSC:
|
34C11 |
MSC:
|
34C15 |
MSC:
|
34D05 |
idZBL:
|
Zbl 06204934 |
idMR:
|
MR3058877 |
. |
Date available:
|
2012-11-26T10:21:29Z |
Last updated:
|
2014-03-12 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143071 |
. |
Reference:
|
[1] Bartušek, M., Cecchi, M, Došlá, Z., Marini, M.: On oscillatory solutions of quasilinear differential equations. J. Math. Anal. Appl. 320 (2006), 108–120. Zbl 1103.34016, MR 2230460, 10.1016/j.jmaa.2005.06.057 |
Reference:
|
[2] Cecchi, M, Marini, M., Villari, G.: On some classes of continuable solutions of a nonlinear differential equation., J. Differ. Equations 118, 2 (1995), 403–419. Zbl 0827.34020, MR 1330834, 10.1006/jdeq.1995.1079 |
Reference:
|
[3] Gouin, H., Rotoli, G.: An analytical approximation of density profile and surface tension of microscopic bubbles for Van der Waals fluids. Mech. Res. Commun. 24 (1997), 255–260. Zbl 0899.76064, 10.1016/S0093-6413(97)00022-0 |
Reference:
|
[4] Ho, L. F.: Asymptotic behavior of radial oscillatory solutions of a quasilinear elliptic equation. Nonlinear Anal. 41 (2000), 573–589. Zbl 0962.34019, MR 1780633, 10.1016/S0362-546X(98)00298-3 |
Reference:
|
[5] Kiguradze, I. T., Chanturia, T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluver Academic, Dordrecht, 1993. Zbl 0782.34002 |
Reference:
|
[6] Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E.: Efficient Numerical Solution of the Density Profile Equation in Hydrodynamics. J. Sci. Comput. 32 (2007), 411–424. Zbl 1179.76062, MR 2335787, 10.1007/s10915-007-9141-0 |
Reference:
|
[7] Kulenović, M. R. S., Ljubović, Ć.: All solutions of the equilibrium capillary surface equation are oscillatory. Appl. Math. Lett. 13 (2000), 107–110. MR 1760271, 10.1016/S0893-9659(00)00041-0 |
Reference:
|
[8] Li, W. T.: Oscillation of certain second-order nonlinear differential equations. J. Math. Anal. Appl. 217 (1998), 1–14. Zbl 0893.34023, MR 1492076, 10.1006/jmaa.1997.5680 |
Reference:
|
[9] Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I.: Analytical-numerical investigation of bubble-type solutions of nonlinear singular problems. J. Comp. Appl. Math. 189 (2006), 260–273. Zbl 1100.65066, MR 2202978, 10.1016/j.cam.2005.05.004 |
Reference:
|
[10] Linde, A. P.: Particle Physics and Inflationary Cosmology. Harwood Academic, Chur, Switzerland, 1990. |
Reference:
|
[11] O’Regan, D.: Existence Theory for Nonlinear Ordinary Differential Equations. Kluver Academic, Dordrecht, 1997. Zbl 1077.34505 |
Reference:
|
[12] O’Regan, D.: Theory of Singular Boundary Value Problems. World Scientific, Singapore, 1994. Zbl 0807.34028, MR 1286741 |
Reference:
|
[13] Ou, C. H., Wong, J. S. W.: On existence of oscillatory solutions of second order Emden–Fowler equations. J. Math. Anal. Appl. 277 (2003), 670–680. Zbl 1027.34039, MR 1961253, 10.1016/S0022-247X(02)00617-0 |
Reference:
|
[14] Rachůnková, I., Rachůnek, L., Tomeček, J.: Existence of oscillatory solutions of singular nonlinear differential equations. Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl 1222.34035 |
Reference:
|
[15] Rachůnková, I., Tomeček, J.: Bubble-type solutions of nonlinear singular problems. Math. Comput. Modelling 51 (2010), 658–669. Zbl 1190.34029, 10.1016/j.mcm.2009.10.042 |
Reference:
|
[16] Rachůnková, I., Tomeček, J.: Homoclinic solutions of singular nonautonomous second order differential equations. Bound. Value Probl. 2009, Article ID 959636, 1–21. Zbl 1190.34028, MR 2552066 |
Reference:
|
[17] Rachůnková, I., Tomeček, J.: Strictly increasing solutions of a nonlinear singular differential equation arising in hydrodynamics. Nonlinear Anal. 72 (2010), 2114–2118. Zbl 1186.34014, MR 2577608, 10.1016/j.na.2009.10.011 |
Reference:
|
[18] Rachůnková, I., Tomeček, J., Stryja, J.:: Oscillatory solutions of singular equations arising in hydrodynamics. Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. Zbl 1203.34058, MR 2652448 |
Reference:
|
[19] Wong, J. S. W.: Second-order nonlinear oscillations: a case history. In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. Zbl 1147.34024, MR 2309447 |
Reference:
|
[20] Wong, J. S. W., Agarwal, R. P.: Oscillatory behavior of solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996), 337–354. Zbl 0855.34039, MR 1376268, 10.1006/jmaa.1996.0086 |
. |