Previous |  Up |  Next

Article

Keywords:
stability; Noor and Ishikawa iterations
Summary:
In this paper, we prove the stability of Noor iteration considered in Banach spaces by employing the notion of a general class of functions introduced by Bosede and Rhoades [6]. We also establish similar result on Ishikawa iteration as a special case. Our results improve and unify some of the known stability results in literature.
References:
[1] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, Cambridge, 2001. MR 1825411 | Zbl 0960.54027
[2] Berinde, V.: Iterative Approximation of Fixed Points. Editura Efemeride, Baia Mare, 2002. MR 1995230 | Zbl 1036.47037
[3] Bosede, A. O.: Noor iterations associated with Zamfirescu mappings in uniformly convex Banach spaces. Fasciculi Mathematici 42 (2009), 29–38. MR 2573523 | Zbl 1178.47042
[4] Bosede, A. O.: Some common fixed point theorems in normed linear spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 49, 1 (2010), 19–26. MR 2797519
[5] Bosede, A. O.: Strong convergence results for the Jungck–Ishikawa and Jungck-Mann iteration processes. Bulletin of Mathematical Analysis and Applications 2, 3 (2010), 65–73. MR 2718198
[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iterations for a general class of functions. Journal of Advanced Mathematical Studies 3, 2 (2010), 23–25. MR 2722440
[7] Bosede, A. O., Akinbo, G.: Some stability theorems associated with $A$-distance and $E$-distance in uniform spaces. Acta Universitatis Apulensis 26 (2011), 121–128. MR 2850603 | Zbl 1274.54117
[8] Ciric, L. B.: Fixed point theorems in Banach spaces. Publ. Inst. Math. (Beograd) 47, 61 (1990), 85–87. MR 1103533 | Zbl 0722.47046
[9] Ciric, L. B.: Fixed Point Theory. Contraction Mapping Principle. FME Press, Beograd, 2003.
[10] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures. Math. Japonica 33 (1988), 693–706. MR 0972379 | Zbl 0655.47045
[11] Imoru, C. O., Akinbo, G., Bosede, A. O.: On the fixed points for weak compatible type and parametrically $\varphi (\epsilon , \delta ; a)$-contraction mappings. Math. Sci. Res. Journal 10, 10 (2006), 259–267. MR 2277967
[12] Imoru, C. O., Olatinwo, M. O.: On the stability of Picard and Mann iteration processes. Carpathian J. Math. 19, 2 (2003), 155–160. MR 2069844 | Zbl 1086.47512
[13] Imoru, C. O., Olatinwo, M. O., Akinbo, G., Bosede, A. O.: On a version of the Banach’s fixed point theorem. General Mathematics 16, 1 (2008), 25–32. MR 2438519 | Zbl 1235.54038
[14] Ishikawa, S.: Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44 (1974), 147–150. DOI 10.1090/S0002-9939-1974-0336469-5 | MR 0336469 | Zbl 0286.47036
[15] Mann, W. R.: Mean value methods in iterations. Proc. Amer. Math. Soc. 4 (1953), 506–510. DOI 10.1090/S0002-9939-1953-0054846-3 | MR 0054846
[16] Noor, M. A.: General variational inequalities. Appl. Math. Letters 1 (1988), 119–121. DOI 10.1016/0893-9659(88)90054-7 | MR 0953368 | Zbl 0655.49005
[17] Noor, M. A.: New approximations schemes for general variational inequalities. J. Math. Anal. Appl. 251 (2000), 217–299. DOI 10.1006/jmaa.2000.7042 | MR 1790406
[18] Noor, M. A.: Some new developments in general variational inequalities. Appl. Math. Computation 152 (2004), 199–277. MR 2050063
[19] Noor, M. A., Noor, K. I., Rassias, T. M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47 (1993), 493–512. MR 1251844 | Zbl 0788.65074
[20] Osilike, M. O.: Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 14/15 (1995/1996), 17–29. MR 1775011
[21] Rhoades, B. E.: Fixed point iteration using infinite matrices. Trans. Amer. Math. Soc. 196 (1974), 161–176. DOI 10.1090/S0002-9947-1974-0348565-1 | MR 0348565 | Zbl 0267.47032
[22] Rhoades, B. E.: Comments on two fixed point iteration methods. J. Math. Anal. Appl. 56, 2 (1976), 741–750. DOI 10.1016/0022-247X(76)90038-X | MR 0430880 | Zbl 0353.47029
[23] Rhoades, B. E.: Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21, 1 (1990), 1–9. MR 1048010 | Zbl 0692.54027
[24] Rus, I. A., Petrusel, A., Petrusel, G.: Fixed Point Theory, 1950–2000, Romanian Contributions. House of the Book of Science, Cluj-Napoca, 2002. MR 1947195 | Zbl 1005.54037
[25] Zamfirescu, T.: Fix point theorems in metric spaces. Arch. Math. 23 (1972), 292–298. DOI 10.1007/BF01304884 | MR 0310859 | Zbl 0239.54030
[26] Zeidler, E.: Nonlinear Functional Analysis and its Applications: Fixed Point Theorems. Springer, New York, 1986. MR 0816732
Partner of
EuDML logo