[1] Athanassiadou, E., Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Ascoli-type theorems and ideal $(\alpha)$-convergence. Filomat 26 (2012), 397-405.
DOI 10.2298/FIL1202397A |
MR 3097937
[2] Boccuto, A.: Egorov property and weak $\sigma$-distributivity in Riesz spaces. Acta Math. (Nitra) 6 (2003), 61-66.
[4] Boccuto, A., Candeloro, D.:
Uniform boundedness theorems in Riesz spaces. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382.
MR 2152821 |
Zbl 1115.28011
[6] Boccuto, A., Candeloro, D.:
Defining limits by means of integrals. Oper. Theory Adv. Appl. 201 (2010), 79-87.
MR 2743976 |
Zbl 1248.28018
[7] Boccuto, A., Das, P., Dimitriou, X., Papanastassiou, N.:
Ideal exhaustiveness, weak convergence and weak compactness in Banach spaces. Real Anal. Exch. 37 (2012), 409-430.
MR 3080600
[8] Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Unconditional convergence in lattice groups with respect to ideals. Commentat. Math. 50 (2010), 161-174.
MR 2789284 |
Zbl 1234.28014
[9] Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in $(l)$-groups. Tatra Mt. Math. Publ. 49 (2011), 17-26.
MR 2865793
[10] Boccuto, A., Dimitriou, X., Papanastassiou, N.:
Basic matrix theorems for ${\mathcal I}$-convergence in $(\ell)$-groups. Math. Slovaca 62 (2012), 1-23.
DOI 10.2478/s12175-012-0053-6 |
MR 2981828
[11] Boccuto, A., Dimitriou, X., Papanastassiou, N., Wilczyński, W.:
Ideal exhaustiveness, continuity and $(\alpha)$-convergence for lattice group-valued functions. Int. J. Pure Appl. Math. 70 (2011), 211-227.
MR 2848411 |
Zbl 1221.28021
[12] Boccuto, A., Riečan, B., Vrábelová, M.: Kurzweil-Henstock Integral in Riesz Spaces. Bentham Science Publ., Singapore (2009).
[13] Činčura, J., Šalát, T., Sleziak, M., Toma, V.:
Sets of statistical cluster points and ${\mathcal I}$-cluster points. Real Anal. Exch. 30 (2004-2005), 565-580.
MR 2177419
[17] Das, P., Lahiri, B. K.:
${\mathcal I}$ and ${\mathcal I}^*$-convergence of nets. Real Anal. Exch. 33 (2007-2008), 431-442.
MR 2458259
[18] Das, P., Malik, P.:
On extremal ${\mathcal I}$-limit points of double sequences. Tatra Mt. Math. Publ. 40 (2008), 91-102.
MR 2440625
[20] Dems, K.:
On ${\mathcal I}$-Cauchy sequences. Real Anal. Exch. 30 (2004-2005), 123-128.
MR 2126799
[22] Gürdal, M., Şahiner, A.:
Extremal ${\mathcal I}$-limit points of double sequences. Appl. Math. E-Notes 8 (2008), 131-137.
MR 2391201
[23] Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.:
${\mathcal I}$-convergence and extremal ${\mathcal I}$-limit points. Math. Slovaca 55 (2005), 443-464.
MR 2181783
[24] Kostyrko, P., Šalát, T., Wilczyński, W.:
$I$-convergence. Real Anal. Exch. 26 (2000-2001), 669-685.
MR 1844385
[25] Kumar, V.:
On $I$ and $I^*$-convergence of double sequences. Math. Commun. 12 (2007), 171-181.
MR 2382452 |
Zbl 1146.40001
[26] Lahiri, B. K., Das, P.:
Further results on ${\mathcal I}$-limit superior and limit inferior. Math. Commun. 8 (2003), 151-156.
MR 2026393
[27] Lahiri, B. K., Das, P.:
$I$ and $I^*$-convergence in topological spaces. Math. Bohem. 130 (2005), 153-160.
MR 2148648 |
Zbl 1111.40001
[28] Letavaj, P.:
${\mathcal I}$-convergence to a set. Acta Math. Univ. Comen., New Ser. 80 (2011), 103-106.
MR 2784847
[32] Šalát, T., Tripathy, B. C., Ziman, M.:
On some properties of ${\mathcal I}$-convergence. Tatra Mt. Math. Publ. 28 (2004), 274-286.
MR 2087000
[33] Šalát, T., Tripathy, B. C., Ziman, M.:
On ${\mathcal I}$-convergence field. Ital. J. Pure Appl. Math. 17 (2005), 45-54.
MR 2203460
[35] Tripathy, B., Tripathy, B. C.:
On $I$-convergent double sequences. Soochow J. Math. 31 (2005), 549-560.
MR 2189799 |
Zbl 1083.40002