[1] An, L., Yan, L.: Smoothness for the collision local time of fractional Brownian motion. Preprint, 2010.
[4] Houdré, Ch., Villa, J.:
An example of infinite dimensional quasi-helix. Stochastic models. Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS), Contemp. Math. 336 (2003), 195-201.
DOI 10.1090/conm/336/06034 |
MR 2037165 |
Zbl 1046.60033
[6] Hu, Y.:
Integral transformations and anticipative calculus for fractional Brownian motions. Mem. Am. Math. Soc. 825 (2005).
MR 2130224 |
Zbl 1072.60044
[10] Mishura, Y.:
Stochastic Calculus for Fractional Brownian Motions and Related Processes. Lecture Notes in Mathematics 1929. Springer, Berlin (2008).
MR 2378138
[12] Nualart, D.:
The Malliavin Calculus and Related Topics. 2nd ed. Probability and Its Applications. Springer, Berlin (2006).
MR 2200233 |
Zbl 1099.60003
[16] Watanabe, S.:
Lectures on Stochastic Differential Equations and Malliavin Calculus. Lectures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental Research. Springer, Berlin (1984).
MR 0742628 |
Zbl 0546.60054
[18] Yan, L., Gao, B., Liu, J.: The Bouleau-Yor identity for a bi-fractional Brownian motion. (to appear) in Stochastics 2012.