[7] Li, X. S.:
An aggregate function method for nonlinear programming. Sci. China (Ser. A) 34 (1991), 1467-1473.
MR 1167796 |
Zbl 0752.90069
[9] Lin, G.-H., Chen, X., Fukushima, M.:
Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization. Math. Program. 116 (2009), 343-368.
DOI 10.1007/s10107-007-0119-3 |
MR 2421285 |
Zbl 1168.90008
[10] Luo, Z.-Q., Pang, J.-S., Ralph, D.:
Mathematical Programs with Equilibrium Constraints. Cambridge University Press Cambridge (1997).
MR 1419501 |
Zbl 0898.90006
[11] Outrata, J. V.: Mathematical programs with equilibrium constraints: Theory and numerical methods. In: Nonsmooth Mechanics of Solids. CISM Courses and Lecture Notes, vol. 485 J. Haslinger, G. E. Stavroulakis Springer New York (2006), 221-274.
[13] Pang, J., Fukushima, M.:
Complementarity constraint qualifications and simplified $B$-stationary conditions for mathematical programs with equilibrium constraints. Comput. Optim. Appl. 13 (1999), 111-136.
DOI 10.1023/A:1008656806889 |
MR 1704116 |
Zbl 1040.90560
[15] Plambeck, E. L., Fu, B.-R., Robinson, S. M., Suri, R.:
Sample-path optimization of convex stochastic performances functions. Math. Program. 75 (1996), 137-176.
DOI 10.1007/BF02592150 |
MR 1426636
[21] Scheel, H., Scholtes, S.:
Mathematical programs with complementarity constraints: stationarity, optimality, and sensitivity. Math. Oper. Res. 25 (2000), 1-22.
DOI 10.1287/moor.25.1.1.15213 |
MR 1854317
[24] Shapiro, A., Dentcheva, D., Ruszczyński, A.:
Lectures on Stochastic Programming. Modeling and Theory. SIAM Philadelphia (2009).
MR 2562798 |
Zbl 1183.90005
[25] Vaart, A. van der, Wellner, J. A.:
Weak Convergence and Empirical Processes. Springer New York (1996).
MR 1385671
[26] Xu, H.:
An implicit programming approach for a class of stochastic mathematical programs with equilibrium constraints. SIAM J. Optim. 16 (2006), 670-696.
DOI 10.1137/040608544 |
MR 2197552
[27] Xu, H., Meng, F.:
Convergence analysis of sample average approximation methods for a class of stochastic mathematical programs with equality constraints. Math. Oper. Res. 32 (2007), 648-668.
DOI 10.1287/moor.1070.0260 |
MR 2348240
[28] Ye, J. J., Zhu, D. L., Zhu, Q. J.:
Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 2 (1997), 481-507.
MR 1443630 |
Zbl 0873.49018