[2] Mawhin, J.:
Semi-coercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130.
MR 0938142 |
Zbl 0647.49007
[3] Mawhin, J., Willem, M.:
Critical Point Theory and Hamiltonian Systems. Springer New York (1989).
MR 0982267 |
Zbl 0676.58017
[4] Mawhin, J., Willem, M.:
Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance. Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 3 (1986), 431-453.
DOI 10.1016/S0294-1449(16)30376-6 |
MR 0870864 |
Zbl 0678.35091
[6] Rabinowitz, P. H.:
Minimax methods in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. Math., Vol. 65 Am. Math. Soc. Providence (1986).
MR 0845785 |
Zbl 0609.58002
[7] Tang, C. L.:
Periodic solutions of non-autonomous second order systems with $\gamma$quasisub-additive potential. J. Math. Anal. Appl. 189 (1995), 671-675.
DOI 10.1006/jmaa.1995.1044 |
MR 1312546
[8] Tang, C. L.:
Periodic solutions of nonautonomous second order systems. J. Math. Anal. Appl. 202 (1996), 465-469.
DOI 10.1006/jmaa.1996.0327
[11] Willem, M.:
Oscillations forcees de systémes hamiltoniens. In: Public. Semin. Analyse Non Linéaire Univ. Besancon (1981).
Zbl 0482.70020
[13] Wu, X. P., Tang, C. L.:
Periodic solutions of a class of nonautonomous second order systems. J. Math. Anal. Appl. 236 (1999), 227-235 \MR 1704579.
DOI 10.1006/jmaa.1999.6408 |
MR 1704579
[15] Zhao, F. K., Wu, X.:
Existence and multiplicity of periodic solutions for non-autonomous second-order systems with linear nonlinearity. Nonlinear Anal., Theory Methods Appl. 60 (2005), 325-335.
MR 2101882
[16] Tang, X. H., Meng, Q.:
Solutions of a second-order Hamiltonian system with periodic boundary conditions. Nonlinear Anal., Real World Appl. 11 (2010), 3722-3733.
MR 2683825 |
Zbl 1223.34024