[2] Arbogast, T., Douglas, J., Hornung, U.:
Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21 (1990), 823-836.
DOI 10.1137/0521046 |
MR 1052874 |
Zbl 0698.76106
[3] Bensoussan, A., Lions, J. L., Papanicolaou, G.:
Asymptotic Analysis for Periodic Structures. North-Holland Amsterdam (1978).
MR 0503330 |
Zbl 0404.35001
[4] Bourgeat, A., Mikelić, A., Wright, S.:
Stochastic two-scale convergence in the mean and applications. J. Reine Angew. Math. 456 (1994), 19-51.
MR 1301450 |
Zbl 0808.60056
[8] Damlamian, A.:
An elementary introduction to periodic unfolding. In: Proceedings of the Narvik Conference 2004, GAKUTO International Series, Math. Sci. Appl. 24 Gakkotosho Tokyo (2006), 119-136.
MR 2233174 |
Zbl 1204.35038
[9] Ekeland, I., Temam, R.:
Convex analysis and variational problems. North-Holland Amsterdam (1976).
MR 0463994 |
Zbl 0322.90046
[10] Franců, J.: On two-scale convergence. In: Proceeding of the 6th Mathematical Workshop, Faculty of Civil Engineering, Brno University of Technology, Brno, October 18, 2007, CD, 7 pages.
[11] Franců, J.:
Modification of unfolding approach to two-scale convergence. Math. Bohem. 135 (2010), 403-412.
MR 2681014 |
Zbl 1224.35020
[13] Lukkassen, D., Nguetseng, G., Wall, P.:
Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86.
MR 1912819 |
Zbl 1061.35015
[14] Murat, F.:
Compacité par compensation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 5 (1978), 489-507 French.
MR 0506997 |
Zbl 0399.46022
[17] Nguetseng, G., Svanstedt, N.:
$\Sigma$-convergence. Banach J. Math. Anal. 2 (2011), 101-135 Open electronic access: www.emis.de/journals/BJMA/.
MR 2738525 |
Zbl 1229.46035
[19] Silfver, J.: Homogenization. PhD. Thesis Mid-Sweden University (2007).
[20] Zhikov, V. V., Krivenko, E. V.:
Homogenization of singularly perturbed elliptic operators. Matem. Zametki 33 (1983), 571-582 (Engl. transl.: Math. Notes {\it 33} (1983), 294-300).
MR 0704444