Previous |  Up |  Next

Article

Keywords:
defect indices; integral operator; quasi-selfadjoint extension; spectral theory
Summary:
In the present work, using a formula describing all scalar spectral functions of a Carleman operator $A$ of defect indices $( 1,1) $ in the Hilbert space $L^{2}( X,\mu ) $ that we obtained in a previous paper, we derive certain results concerning the localization of the spectrum of quasi-selfadjoint extensions of the operator $A$.
References:
[1] Akhiezer, N. I., Glazman, I. M.: Theory of Linear Operators in Hilbert Space. Dover, New York (1993). MR 1255973 | Zbl 0874.47001
[2] Aleksandrov, E. L.: On the resolvents of symmetric operators which are not densely defined. Russian Izv. Vyssh. Uchebn. Zaved., Mat. 3-12 (1970). MR 0287345
[3] Bahri, S. M.: On the extension of a certain class of Carleman operators. Z. Anal. Anwend. 26 57-64 (2007). DOI 10.4171/ZAA/1310 | MR 2306105 | Zbl 1142.47027
[4] Bahri, S. M.: Spectral properties of a certain class of Carleman operators. Arch. Math., Brno 43 163-175 (2007). MR 2354805 | Zbl 1164.05037
[5] Bahri, S. M.: On convex hull of orthogonal scalar spectral functions of a Carleman operator. Bol. Soc. Parana. Mat. (3) 26 9-18 (2008). MR 2505450 | Zbl 1178.45019
[6] Berezanskii, Yu. M.: Expansions in Eigenfunctions of Selfadjoint Operators. Transl. Math. Monogr., 17, Amer. Math. Soc., Providence, RI (1968). MR 0222718 | Zbl 0157.16601
[7] Carleman, T.: Sur les équations intégrales singuli ères à noyau réel et symétrique. Almquwist Wiksells Boktryckeri Uppsala (1923).
[8] Gresztesy, F., Makarov, K., Tsekanovskii, E.: An addendum to Krein's formula. J. Math. Anal. Appl. 222 594-606 (1998). DOI 10.1006/jmaa.1998.5948 | MR 1628437
[9] Glazman, I. M.: On a class of solutions of the classical moment problem. Zap. Khar'kov. Mat. Obehch 20 95-98 (1951). MR 0049252
[10] Glazman, I. M., Naiman, P. B.: On the convex hull of orthogonal spectral functions. Dokl. Akad. Nauk SSSR [Soviet Math. Dokl.] 102 445-448 (1955). MR 0074636
[11] Gorbachuk, M. L., Gorbachuk, V. I.: M. G. Krein's lectures on entire operators. Birkhäuser, Basel (1997). MR 1466698 | Zbl 0883.47008
[12] Allan, Gut: Probability: A graduate course. Springer, New York (2005). MR 2125120
[13] Korotkov, V. B.: Integral Operators. Russian Nauka, Novosibirsk (1983). Zbl 0558.45013
[14] Kurasov, P., Kuroda, S. T.: Krein's formula and perturbation theory. J. Oper. Theory 51 321-334 (2004). MR 2074184
[15] Langer, H., Textorius, B.: On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space. Pacific J. Math. 72 135-165 (1977). DOI 10.2140/pjm.1977.72.135 | MR 0463964 | Zbl 0335.47014
[16] Simon, B.: Trace Ideals and Their Applications, 2nd edition. Amer. Math. Soc., Providence, RI (2005). MR 2154153
[17] Shtraus, A. V.: Extensions and generalized resolvents of a symmetric operator which is not densely defined. Russian Izv. Akad. Nauk SSSR, Ser. Mat. {\it 34} (1970), 175-202; Math. USSR, Izv. {\it 4} (1970), 179-208. MR 0278098 | Zbl 0216.16403
[18] Targonski, Gy. I.: On Carleman integral operators. Proc. Amer. Math. Soc. 18 (1967),450-456. MR 0215139 | Zbl 0147.12002
[19] Weidman, J.: Carleman operators. Manuscripts Math. 1-38 (1970), 2. DOI 10.1007/BF01168477
[20] Weidman, J.: Linear operators in Hilbert spaces. Springer, New-York (1980).
Partner of
EuDML logo