Previous |  Up |  Next

Article

Keywords:
paranorm space; invariant mean; orlicz function; Musielak–orlicz function; $n$-normed space; solid
Summary:
In this paper we introduce a new sequence space $ BV_{\sigma }(\mathcal {M},u,p,r, \Vert \cdot , \ldots , \cdot \Vert )$ defined by a sequence of Orlicz functions $\mathcal {M} = (M_k)$ and study some topological properties of this sequence space.
References:
[1] Ahmad, Z. U., Mursaleen, M.: An application of Banach limits. Proc. Amer. Math. Soc., 103 (1983), 244–246. DOI 10.1090/S0002-9939-1988-0938676-7 | MR 0938676
[2] Gähler S.: Linear 2-normietre Rume. Math. Nachr. 28 (1965), 1–43. DOI 10.1002/mana.19640280102
[3] Gunawan H.: On $n$-inner product, $n$-norms, and the Cauchy–Schwartz Inequality. Scientiae Mathematicae Japonicae 5 (2001), 47–543. MR 1885776
[4] Gunawan H.: The space of $p$-summable sequence and its natural $n$-norm. Bull. Aust. Math. Soc. 64 (2001), 137–147. DOI 10.1017/S0004972700019754 | MR 1848086
[5] Gunawan H., Mashadi M.: On $n$-normed spaces. Int. J. Math. Math. Sci. 27 (2001), 631–639. DOI 10.1155/S0161171201010675 | MR 1873126 | Zbl 1006.46006
[6] Khan, V. A.: On a new sequence space defined by Orlicz functions. Commun. Fac. Sci. Univ. Ank. $A_1$ 57 (2008), 25–33. MR 2528885 | Zbl 1177.46006
[7] Lindenstrauss, J., Tzafriri, L.: On Orlicz seequence spaces. Israel J. Math. 10 (1971), 379–390. DOI 10.1007/BF02771656 | MR 0313780
[8] Lorentz G. G.: A Contribution to the theory of divergent series. Acta Math. 80 (1948), 167–190. DOI 10.1007/BF02393648 | MR 0027868
[9] Maddox, I. J.: Some properties of paranormed sequence spaces. J. London Math. Soc. 1, (1989), 316–322. MR 0247330
[10] Maligranda, L.: Orlicz spaces & interpolation. Seminars in mathematics 5 Polish Academy of Sciences, 1989. MR 2264389 | Zbl 0874.46022
[11] Misiak A.: n-inner product spaces. Math. Nachr. 140, (1989), 299–319. DOI 10.1002/mana.19891400121 | MR 1015402 | Zbl 0708.46025
[12] Murasaleen, M.: Matrix transformation between some new sequence spaces. Houston J. Math. 9 (1983), 505–509.
[13] Murasaleen, M.: On some new invariant matrix methods of summability. Quart. J. Math. Oxford 34, (1983), 77–86. DOI 10.1093/qmath/34.1.77 | MR 0688425
[14] Musielak, J.: Orlicz Spaces. Lectures Notes in Math. 1034 Springer, 1983. Zbl 0557.46020
[15] Raj K., Sharma, A. K., Sharma S. K.: A Sequence space defined by Musielak-Orlicz functions. Int. J. Pure Appl. Math. 67 (2011), 475–484. MR 2814723
[16] Raj K., Sharma, S. K., Sharma A. K.: Some difference sequence spaces in $n$-normed spaces defined by Musielak–Orlicz function. Armenian J. Math. 3 (2010), 127–141. MR 2792497
[17] Raj K., Sharma, S. K.: Some sequence spaces in 2-normed spaces defined by Musielak-Orlicz functions. Acta Univ. Sapientiae Math. 3 (2011), 97–109. MR 2823221
[18] Rao, M. M, Ren, Z. D: Theory of Orlicz Spaces. Marcel Dekker Inc. New york, Basel, Hongkong, 1991. MR 1113700 | Zbl 0724.46032
[19] Schafer, P.: Infinite matrices and invariant means. Proc. Amer. Math. Soc. 36 (1972), 104–110. DOI 10.1090/S0002-9939-1972-0306763-0 | MR 0306763
[20] Wilansky, A.: Summability through Functional Analysis. North-Holland Math. Stud., 1984. MR 0738632 | Zbl 0531.40008
Partner of
EuDML logo