Previous |  Up |  Next

Article

Keywords:
analytic; Starlike; Convex; Quasi-Hadamard product
Summary:
In the present paper, we establish some interesting results concerning the quasi-Hadamard product for certain subclasses of analytic functions.
References:
[1] Al-oboudi, F. M.: On univalent functions defined by a generalized Salagean operator. Inter. J. Math. Math. Sci. 27 (2004), 1429–1436. DOI 10.1155/S0161171204108090 | MR 2085011 | Zbl 1072.30009
[2] Altintas, O., Owa, S.: On subclasses of univalent functions with negative coefficients. Pusan Kyongnam Math. J. 4 (1998), 41–56.
[3] Aouf, M. K., El-Ashwah, R. M., El-Deeb, S. M.: Some inequalities for certain p-valent functions involving extended multiplier transformations. Proc. Pakistan Acad. Sci. 46 (2009), 217–221. MR 2602194
[4] Bharati, R., Parvatham, R., Swaminathan, A.: On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 26, 1 (1997), 17–32. MR 1457247 | Zbl 0898.30010
[5] Cho, N. E., Srivastava, H. M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Modeling 37 (2002), 39–49. DOI 10.1016/S0895-7177(03)80004-3 | MR 1959457
[6] Cho, N. E., Kim, T. H.: Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc. 40 (2003), 399–410. DOI 10.4134/BKMS.2003.40.3.399 | MR 1996850 | Zbl 1032.30007
[7] Darus, M., Faisal, I.: A different approach to normalized analytic functions through meromorphic functions defined by extended multiplier transformations operator. Int. J. App. Math. Stat. 23 (2011), 112–121. MR 2803119
[8] Darus, M., Faisal, I.: Characrerization properties for a class of analytic aunctions defined by generalized Cho and Srivastava operator. In: Proc. 2nd Inter. Conf. Math. Sci., Kuala Lumpur, Malaysia, 2010, 1106–1113.
[9] Kumar, V.: Hadamard product of certain starlike functions. J. Math. Anal. Appl. 110 (1985), 425–428. DOI 10.1016/0022-247X(85)90304-X | MR 0805264 | Zbl 0585.30013
[10] Kumar, V.: Quasi-Hadamard product of certain univalent function. J. Math. Anal. Appl. 126 (1987), 70–77. DOI 10.1016/0022-247X(87)90074-6 | MR 0900527
[11] Murugusundaramoorthya, G., Mageshb, N.: On certain subclasses of analytic functions associated with hypergeometric functions. App. Math. Lett. 24 (2011), 494–500. DOI 10.1016/j.aml.2010.10.048 | MR 2749733
[12] Salagean, G. S.: Subclasses of univalent functions. Lecture Notes in Mathematics 1013, Springer-Verlag, Berlin, 1983, 362–372. MR 0738107 | Zbl 0531.30009
[13] Silverman, H.: Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 51, (1975), 109–116. DOI 10.1090/S0002-9939-1975-0369678-0 | MR 0369678 | Zbl 0311.30007
[14] Subramanian, K. G., Sudharsan, T. V., Balasubrahmanyam, P., Silverman, H.: Classes of uniformly starlike functions. Publ. Math. Debrecen. 53, 3-4 (1998), 309–315. MR 1657542 | Zbl 0921.30007
[15] Subramanian, K. G., Murugusundaramoorthy, G., Balasubrahmanyam, P., Silverman, H.: Subclasses of uniformly convex and uniformly starlike functions. Math. Japonica 42, 3 (1995), 517–522. MR 1363841
[16] Uralegaddi, B. A., Somanatha, C.: Certain classes of univalent functions. In: Srivastava, H. M., Owa, S. (eds) Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992, 371–374. MR 1232456 | Zbl 0987.30508
Partner of
EuDML logo