[1] Beremlijski, P., Haslinger, J., Kočvara, M., Kučera, R., Outrata, J. V.:
Shape optimization in three-dimensional contact problems with Coulomb friction. SIAM J. Optim. 20 (2009), 416-444.
DOI 10.1137/080714427 |
MR 2507130 |
Zbl 1186.49028
[5] Ekeland, I., Temam, R.:
Analyse convexe et problèmes variationnels. Études mathématiques. Dunod/Gauthier-Villars Paris/Bruxelles-Montréal (1974), French.
MR 0463993
[6] Glowinski, R.:
Numerical methods for nonlinear variational problems. Springer Series in Computational Physics. Springer New York (1984).
MR 0737005
[8] Haslinger, J., Hlaváček, I., Nečas, J.:
Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Vol. IV P. G. Ciarlet et al. North-Holland Amsterdam (1996), 313-485.
DOI 10.1016/S1570-8659(96)80005-6 |
MR 1422506
[11] Hild, P., Renard, Y.:
Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics. Quart. Appl. Math. 63 (2005), 553-573 \MR 2169034.
DOI 10.1090/S0033-569X-05-00974-0 |
MR 2169034
[12] Janovský, V.:
Catastrophic features of Coulomb friction model. The mathematics of finite elements and applications IV, MAFELAP 1981, Proc. Conf., Uxbridge/Middlesex 1981 (1982), 259-264.
Zbl 0504.73077
[13] Nečas, J., Jarušek, J., Haslinger, J.:
On the solution of the variational inequality to the Signorini problem with small friction. Boll. Unione Mat. Ital., V. Ser., B 17 (1980), 796-811.
MR 0580559
[16] Scholtes, S.: Introduction to piecewise differentiable equations. Preprint No. 53/1994. Institut für Statistik und Mathematische Wirtschaftstheorie Universität Karlsruhe (1994).