Previous |  Up |  Next

Article

Title: Definability for equational theories of commutative groupoids (English)
Author: Ježek, Jaroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 2
Year: 2012
Pages: 305-333
Summary lang: English
.
Category: math
.
Summary: We find several large classes of equations with the property that every automorphism of the lattice of equational theories of commutative groupoids fixes any equational theory generated by such equations, and every equational theory generated by finitely many such equations is a definable element of the lattice. We conjecture that the lattice has no non-identical automorphisms. (English)
Keyword: simple algebra
Keyword: idempotent
Keyword: group
MSC: 08A35
MSC: 08B15
MSC: 08B26
MSC: 20N02
idZBL: Zbl 1265.08013
idMR: MR2990179
DOI: 10.1007/s10587-012-0032-7
.
Date available: 2012-06-08T09:35:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/142831
.
Reference: [1] Grech, M.: Irreducible varieties of commutative semigroups.J. Algebra 261 (2003), 207-228. Zbl 1026.20040, MR 1967162, 10.1016/S0021-8693(02)00674-9
Reference: [2] Grech, M.: Automorphism of the lattice of equational theories of commutative semigroups.Trans. Am. Math. Soc. 361 (2009), 3435-3462. MR 2491887, 10.1090/S0002-9947-09-04849-1
Reference: [3] Ježek, J.: The lattice of equational theories. Part I: Modular elements.Czech. Math. J. 31 (1981), 127-152. MR 0604120
Reference: [4] Ježek, J.: The lattice of equational theories. Part II: The lattice of full sets of terms.Czech. Math. J. 31 (1981), 573-603. MR 0631604
Reference: [5] Ježek, J.: The lattice of equational theories. Part III: Definability and automorphisms.Czech. Math. J. 32 (1982), 129-164. MR 0646718
Reference: [6] Ježek, J.: The lattice of equational theories. Part IV: Equational theories of finite algebras.Czech. Math. J. 36 (1986), 331-341. MR 0831318
Reference: [7] Ježek, J.: The ordering of commutative terms.Czech. Math. J. 56 (2006), 133-154. Zbl 1164.03318, MR 2207011, 10.1007/s10587-006-0010-z
Reference: [8] Ježek, J., McKenzie, R.: Definability in the lattice of equational theories of semigroups.Semigroup Forum 46 (1993), 199-245. Zbl 0782.20051, MR 1200214, 10.1007/BF02573566
Reference: [9] Kisielewicz, A.: Definability in the lattice of equational theories of commutative semigroups.Trans. Am. Math. Soc. 356 (2004), 3483-3504. Zbl 1050.08005, MR 2055743, 10.1090/S0002-9947-03-03351-8
Reference: [10] McKenzie, R. N., McNulty, G. F., Taylor, W. F.: Algebras, Lattices, Varieties. Volume I.Wadsworth & Brooks/Cole Monterey (1987). Zbl 0611.08001, MR 0883644
Reference: [11] Tarski, A.: Equational logic and equational theories of algebras. Proc. Logic Colloq., Hannover 1966.Contrib. Math. Logic (1968), 275-288. MR 0237410
Reference: [12] Vernikov, B. M.: Proofs of definability of some varieties and sets of varieties of semigroups.Preprint. MR 2898768
.

Files

Files Size Format View
CzechMathJ_62-2012-2_2.pdf 390.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo