Previous |  Up |  Next

Article

Title: Periodic solutions for a class of functional differential system (English)
Author: Wang, Weibing
Author: Lai, Baishun
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 2
Year: 2012
Pages: 139-148
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the existence of periodic solutions to a class of functional differential system. By using Schauder's fixed point theorem, we show that the system has aperiodic solution under given conditions. Finally, four examples are given to demonstrate the validity of our main results. (English)
Keyword: functional differential equation
Keyword: periodic solution
Keyword: fixed point theorem
MSC: 34K13
idMR: MR2946213
DOI: 10.5817/AM2012-2-139
.
Date available: 2012-06-08T08:35:45Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142827
.
Reference: [1] A. Wan, D. Jiang, Xu, X.: A new existence theory for positive periodic solutions to functional differential equations.Comput. Math. Appl. 47 (2004), 1257–1262. MR 2070981, 10.1016/S0898-1221(04)90120-4
Reference: [2] Cheng, S., Zhang, G.: Existence of positive periodic solutions for non-autonomous functional differential equations.Electron. J. Differential Equations 59 (2001), 1–8. Zbl 1003.34059, MR 1863778
Reference: [3] Chow, S.: Existence of periodic solutions of autonomous functional differential equations.Differential Equations 15 (1974), 350–378. Zbl 0295.34055, MR 0336003, 10.1016/0022-0396(74)90084-9
Reference: [4] Freedman, H. I., Wu, J.: Periodic solutions of single–species models with periodic delay.SIAM J. Math. Anal. 23 (1992), 689–701. Zbl 0764.92016, MR 1158828, 10.1137/0523035
Reference: [5] Wang, H: Positive periodic solutions of functional differential equations.J. Differential Equations 202 (2004), 354–366. Zbl 1064.34052, MR 2069005, 10.1016/j.jde.2004.02.018
Reference: [6] Jiang, D., Wei, J., Zhang, B.: Positive periodic solutions of functional differential equations and population models.Electron. J. Differential Equations 71 (2002), 1–13. Zbl 1010.34065, MR 1921144
Reference: [7] Joseph, W., So, H., Yu, J.: Global attractivity and uniform persistence in Nicholson’s blowflies.Differential Equations Dynam. Systems 1 (1994), 11–18. MR 1386035
Reference: [8] Kuang, Y., Smith, H. L.: Periodic solutions of differential delay equations with threshold-type delays, oscillations and dynamics in delay equations.Contemp. Math. 129 (1992), 153–176. MR 1174140, 10.1090/conm/129/1174140
Reference: [9] Li, Z., Wang, X.: Existence of positive periodic solutions for neutral functional differential equations.Electron. J. Differential Equations 34 (2006), 1–8. Zbl 1099.34063, MR 2213578
Reference: [10] Weng, P., Liang, M.: The existence and behavior of periodic solution of hematopoiesis model.Math. Appl. 4 (1995), 434–439. MR 1356679
.

Files

Files Size Format View
ArchMathRetro_048-2012-2_6.pdf 450.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo