Previous |  Up |  Next

Article

Keywords:
$\phi$-Laplacian; BVPs; Krasnosel’skii’s fixed point theorem; Schauder’s fixed point theorem
Summary:
The aim of this paper is to present new existence results for $\phi$-Laplacian boundary value problems with linear bounded operator conditions. Existence theorems are obtained using the Schauder and the Krasnosel'skii fixed point theorems. Some examples illustrate the results obtained and applications to multi-point boundary value problems are provided.
References:
[1] Bachouche, K., Djebali, S., Moussaoui, T.: One-dimensional Dirichlet $\phi --$Laplacian BVPs with first order derivative dependence. Adv. Dynam. Syst. Appl. 6 (2) (2011), 159–175. MR 2911979
[2] Benmezai, A., Djebali, S., Moussaoui, T.: Multiple positive solutions for $\phi $–Laplacian BVPs. Panamer. Math. J. 17 (3) (2007), 53–73. MR 2335473
[3] Benmezai, A., Djebali, S., Moussaoui, T.: Positive solutions for $\phi $–Laplacian Dirichlet BVPs. Fixed Point Theory 8 (2) (2007), 167–186. MR 2358986 | Zbl 1156.34015
[4] Benmezai, A., Djebali, S., Moussaoui, T.: Existence results for one-dimensional Dirichlet $\phi $–Laplacian BVPs: a fixed point approach. Dynam. Systems Appl. 17 (2008), 149–166. MR 2433897
[5] Deimling, K.: Nonlinear Functional Analysis. Springer–Verlag, Berlin, Heidelberg, 1985. MR 0787404 | Zbl 0559.47040
[6] Feng, H., Ge, W., Jiang, M.: Multiple positive solutions for $m$–point boundary-value problems with one–dimensional $p$–Laplacian. Nonlinear Anal. 68 (8) (2008), 2269–2279. DOI 10.1016/j.na.2007.01.052 | MR 2398649
[7] Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York, 2003. MR 1987179 | Zbl 1025.47002
[8] Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego, 1988. MR 0959889 | Zbl 0661.47045
[9] Ji, D., Feng, M., Ge, W.: Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity. Appl. Math. Comput. 196 (2008), 511–520. DOI 10.1016/j.amc.2007.06.028 | MR 2388707 | Zbl 1138.34014
[10] Karakostas, G. L.: Positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 68 (2004), 1–12. MR 2057655 | Zbl 1057.34010
[11] Karakostas, G. L.: Triple positive solutions for the $\Phi $–Laplacian when $\Phi $ is a sup–multiplicative–like function. Electron. J. Differential Equations 69 (2004), 1–12. MR 2057656 | Zbl 1057.34010
[12] Karakostas, G. L.: Solvability of the $\phi $–Laplacian with nonlocal boundary conditions. Appl. Math. Comput. 215 (2009), 514–523. DOI 10.1016/j.amc.2009.05.022 | MR 2561508
[13] Krasnosel’skii, M. A.: Positive Solutions of Operator Equations. Noordhoff, Groningen, The Netherlands, 1964.
[14] Smart, D. R.: Fixed Point Theorems. cambridge tracts in mathematics ed., vol. 66, Cambridge University Press, London, 1974. MR 0467717 | Zbl 0297.47042
[15] Wang, Y., Ge, W.: Existence of multiple positive solutions for multipoint boundary value problems with a one–dimensional $p$–Laplacian. Nonlinear Anal. 67 (2) (2007), 476–485. DOI 10.1016/j.na.2006.06.011 | MR 2317182 | Zbl 1130.34009
[16] Wang, Y., Ge, W.: Existence of triple positive solutions for multi–point boundary value problems with a one dimensional $p$–Laplacian. Comput. Math. Appl. 54 (6) (2007), 793–807. DOI 10.1016/j.camwa.2006.10.038 | MR 2348264 | Zbl 1134.34017
[17] Yan, B.: Multiple positive solutions for singular boundary–value problems with derivative dependence on finite and infinite intervals. Electron. J. Differential Equations 74 (2006), 1–25. MR 2240822 | Zbl 1117.34031
[18] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Vol. I: Fixed Point Theorems. Springer–Verlag, New York, 1986. MR 0816732
[19] Zhang, Z., Wang, J.: On existence and multiplicity of positive solutions to singular multi–point boundary value problems. J. Math. Anal. Appl. 295 (2004), 502–512. DOI 10.1016/j.jmaa.2004.03.057 | MR 2072028 | Zbl 1056.34018
Partner of
EuDML logo