Title:
|
An elementary proof of a congruence by Skula and Granville (English) |
Author:
|
Meštrović, Romeo |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
2 |
Year:
|
2012 |
Pages:
|
113-120 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $p\ge 5$ be a prime, and let $q_p(2):=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base $2$. The following curious congruence was conjectured by L. Skula and proved by A. Granville
\[ q_p(2)^2\equiv -\sum _{k=1}^{p-1}\frac{2^k}{k^2}\quad(\operatorname{mod} p)\,. \] In this note we establish the above congruence by entirely elementary number theory arguments. (English) |
Keyword:
|
congruence |
Keyword:
|
Fermat quotient |
Keyword:
|
harmonic numbers |
MSC:
|
05A10 |
MSC:
|
11A07 |
MSC:
|
11B65 |
idMR:
|
MR2946211 |
DOI:
|
10.5817/AM2012-2-113 |
. |
Date available:
|
2012-06-08T08:33:03Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142825 |
. |
Reference:
|
[1] Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli.J. Number Theory 66 (1997), 29–50. Zbl 0884.11003, MR 1467188, 10.1006/jnth.1997.2162 |
Reference:
|
[2] Cao, H. Q., Pan, H.: A congruence involving product of $q$–binomial coefficients.J. Number Theory 121 (2006), 224–233. MR 2274904, 10.1016/j.jnt.2006.02.004 |
Reference:
|
[3] Ernvall, R., Metsänkylä, T.: On the $p$–divisibility of Fermat quotients.Math. Comp. 66 (1997), 1353–1365. Zbl 0903.11002, MR 1408373, 10.1090/S0025-5718-97-00843-0 |
Reference:
|
[4] Glaisher, J. W. L.: On the residues of the sums of the inverse powers of numbers in arithmetical progression.Quart. J. Math. 32 (1900), 271–288. |
Reference:
|
[5] Granville, A.: Some conjectures related to Fermat’s Last Theorem.Number Theory (Banff, AB, 1988), de Gruyter, Berlin (1990), 177–192. Zbl 0702.11015, MR 1106660 |
Reference:
|
[6] Granville, A.: Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers.Organic Mathematics–Burnaby, BC 1995, CMS Conf. Proc., vol. 20, Amer. Math. Soc., Providence, RI, 1997, pp. 253–276. Zbl 0903.11005, MR 1483922 |
Reference:
|
[7] Granville, A.: The square of the Fermat quotient.Integers 4 (2004), # A22. Zbl 1083.11005, MR 2116007 |
Reference:
|
[8] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Clarendon Press, Oxford, 1960. Zbl 0086.25803 |
Reference:
|
[9] Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson.Ann. Math. (1938), 350–360. Zbl 0019.00505, MR 1503412 |
Reference:
|
[10] Ribenboim, P.: 13 lectures on Fermat’s last theorem.Springer–Verlag, New York, Heidelberg, Berlin, 1979. Zbl 0456.10006, MR 0551363 |
Reference:
|
[11] Slavutsky, I. Sh.: Leudesdorf’s theorem and Bernoulli numbers.Arch. Math. 35 (1999), 299–303. |
Reference:
|
[12] Sun, Z. H.: Congruences concerning Bernoulli numbers and Bernoulli polynomials.Discrete Appl. Math. 105 (1–3) (2000), 193–223. Zbl 0990.11008, MR 1780472, 10.1016/S0166-218X(00)00184-0 |
Reference:
|
[13] Sun, Z. W.: Arithmetic theory of harmonic numbers.Proc. Amer. Math. Soc. 140 (2012), 415–428. MR 2846311, 10.1090/S0002-9939-2011-10925-0 |
Reference:
|
[14] Tauraso, R.: Congruences involving alternating multiple harmonic sums.Electron. J. Comb. 17 (2010), # R16. Zbl 1222.11006, MR 2587747 |
Reference:
|
[15] Wolstenholme, J.: On certain properties of prime numbers.Quart. J. Pure Appl. Math. 5 (1862), 35–39. |
. |