Previous |  Up |  Next

Article

Keywords:
spray manifold; Finsler manifold; projective vector field; affine vector field; conformal vector field
Summary:
Applying concepts and tools from classical tangent bundle geometry and using the apparatus of the calculus along the tangent bundle projection (‘pull-back formalism’), first we enrich the known lists of the characterizations of affine vector fields on a spray manifold and conformal vector fields on a Finsler manifold. Second, we deduce consequences on vector fields on the underlying manifold of a Finsler structure having one or two of the mentioned geometric properties.
References:
[1] Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. 2nd edition, Springer-Verlag, New York and Berlin 1988 MR 0960687 | Zbl 0875.58002
[2] Akbar-Zadeh, H.: Transformations infinitésimales conformes des variétés finsleriennes compactes. Annales Polonici Mathematici XXXVI 1979 213-229 MR 0537616 | Zbl 0413.53036
[3] Akbar-Zadeh, H.: Champs de vecteurs projectifs sur le fibré unitaire. J. Math. pures et appl. 65 1986 47-79 MR 0844240
[4] Bácsó, S., Szilasi, Z.: On the projective theory of sprays. Acta Math. Acad. Paed. Nyregyháziensis 26 2010 171-207 MR 2754415 | Zbl 1240.53047
[5] Crampin, M.: On horizontal distributions on the tangent bundle of a differentiable manifold. J. London Math. Soc (2) 3 1971 178-182 DOI 10.1112/jlms/s2-3.1.178 | MR 0293528 | Zbl 0215.51003
[6] León, M. de, Rodrigues, P.R.: Methods of Differential Geometry in Analytical Mechanics. North-Holland, Amsterdam 1989 MR 1021489 | Zbl 0687.53001
[7] Greub, W., Halperin, S., Vanstone, R.: Connections, Curvature, and Cohomology. Vol. I, Academic Press, New York and London 1972 Zbl 0322.58001
[8] Grifone, J.: Structure presque-tangente et connexions, I. Ann. Inst. Fourier (Grenoble) 22 1972 287-334 DOI 10.5802/aif.407 | MR 0336636 | Zbl 0219.53032
[9] Grifone, J.: Transformations infinitésimales conformes d’une variété finslerienne. C.R. Acad. Sc. Paris 280, Série A 1975 519-522 MR 0388300 | Zbl 0311.53071
[10] Grifone, J.: Sur les transformations infinitésimales conformes d’une variété finslérienne. C.R. Acad. Sc. Paris 280, Série A 1975 583-585 MR 0370450 | Zbl 0311.53071
[11] Lang, S.: Fundamentals of Differential Geometry. Springer-Verlag, New York 1999 MR 1666820 | Zbl 0932.53001
[12] Lovas, R.L.: Affine and projective vector fields on spray manifolds. Periodica Mathematica Hungarica 48 2004 165-179 DOI 10.1023/B:MAHU.0000038973.18653.2e | MR 2077694 | Zbl 1067.53059
[13] Matsumoto, M.: Theory of extended point transformations of Finsler spaces I. Tensor N.S. 45 1987 109-115 Zbl 0637.53031
[14] Matsumoto, M.: Theory of extended point transformations of Finsler spaces II. Tensor N.S. 47 1988 203-214 MR 1037236 | Zbl 0701.53046
[15] Misra, R.B.: Groups of transformations in Finslerian spaces. Internal Reports of the ICTP, Trieste 1993
[16] Szilasi, J.: A Setting for Spray and Finsler Geometry. Handbook of Finsler Geometry , Kluwer Academic Publishers, Dordrecht 2003 1183-1426 MR 2066454 | Zbl 1105.53043
[17] Szilasi, J., Vincze, Cs.: On conformal equivalence of Riemann-Finsler metrics. Publ. Math. Debrecen 52 1998 167-185 MR 1603351 | Zbl 0907.53044
[18] Yano, K.: The Theory of Lie Derivatives and its Applications. North-Holland, Amsterdam 1957 MR 0088769 | Zbl 0077.15802
[19] Yano, K., Ishihara, S.: Tangent and Cotangent Bundles. Marcel Dekker Inc., New York 1973 MR 0350650 | Zbl 0262.53024
Partner of
EuDML logo