Previous |  Up |  Next

Article

Keywords:
local cohomology; cofinite modules; mimimax modules; AF modules; associated primes
Summary:
Let $R$ be a commutative Noetherian ring, $\mathfrak {a}$ an ideal of $R$, $M$ an $R$-module and $t$ a non-negative integer. In this paper we show that the class of minimax modules includes the class of $\mathcal {AF}$ modules. The main result is that if the $R$-module ${\rm Ext}^t_R(R/\mathfrak {a},M)$ is finite (finitely generated), $H^i_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite for all $i<t$ and $H^t_\mathfrak {a}(M)$ is minimax then $H^t_\mathfrak {a}(M)$ is $\mathfrak {a} $-cofinite. As a consequence we show that if $M$ and $N$ are finite $R$-modules and $H^i_\mathfrak {a}(N)$ is minimax for all $i<t$ then the set of associated prime ideals of the generalized local cohomology module $H^t_\mathfrak {a}(M,N)$ is finite.
References:
[1] Bahmanpour, K., Naghipour, R.: On the cofiniteness of local cohomology modules. Proc. Am. Math. Soc. 136 2359-2363 (2008). DOI 10.1090/S0002-9939-08-09260-5 | MR 2390502 | Zbl 1141.13014
[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge (2008). MR 1613627 | Zbl 1133.13017
[3] Enochs, E.: Flat covers and flat cotorsion modules. Proc. Am. Math. Soc. 92 179-184 (1984). DOI 10.1090/S0002-9939-1984-0754698-X | MR 0754698 | Zbl 0522.13008
[4] Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9 145-164 (1970). DOI 10.1007/BF01404554 | MR 0257096 | Zbl 0196.24301
[5] Herzog, J.: Komplexe Auflösungen und Dualität in der lokalen Algebra. Habilitationsschrift Universität Regensburg, Regensburg (1970), German.
[6] Huneke, C., Koh, J.: Cofiniteness and vanishing of local cohomology modules. Math. Proc. Camb. Philos. Soc. 110 421-429 (1991). DOI 10.1017/S0305004100070493 | MR 1120477 | Zbl 0749.13007
[7] Mafi, A.: Some results on local cohomology modules. Arch. Math. 87 211-216 (2006). DOI 10.1007/s00013-006-1674-1 | MR 2258920 | Zbl 1102.13018
[8] Mafi, A.: On the associated primes of generalized local cohomology modules. Commun. Algebra. 34 2489-2494 (2006). DOI 10.1080/00927870600650739 | MR 2240388 | Zbl 1097.13023
[9] Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285 649-668 (2005). DOI 10.1016/j.jalgebra.2004.08.037 | MR 2125457 | Zbl 1093.13012
[10] Melkersson, L.: Problems and Results on Cofiniteness: A Survey. IPM Proceedings Series No. II, IPM (2004).
[11] Vasconcelos, W. V.: Divisor Theory in Module Categories, North-Holland Mathematics Studies. 14. Notas de Matematica, North-Holland Publishing Company, Amsterdam (1974). MR 0498530
[12] Yassemi, S.: Cofinite modules. Commun. Algebra 29 2333-2340 (2001). DOI 10.1081/AGB-100002392 | MR 1845114 | Zbl 1023.13013
[13] Zink, T.: Endlichkeitsbedingungen für Moduln über einem Noetherschen Ring. German Math. Nachr. 64 239-252 (1974). DOI 10.1002/mana.19740640114 | MR 0364223 | Zbl 0297.13015
[14] Zöschinger, H.: Minimax-moduln. German J. Algebra 102 1-32 (1986). DOI 10.1016/0021-8693(86)90125-0 | MR 0853228 | Zbl 0593.13012
[15] Zöschinger, H.: Über die Maximalbedingung für radikalvolle Untermoduln. German Hokkaido Math. J. 17 101-116 (1988). DOI 10.14492/hokmj/1381517790 | MR 0928469 | Zbl 0653.13011
Partner of
EuDML logo