Previous |  Up |  Next

Article

Keywords:
approximate solution; error estimate; Galerkin method; heat convection equation; orthogonal projection; viscous fluid
Summary:
The paper investigates the Galerkin method for an initial boundary value problem for heat convection equations. New error estimates for the approximate solutions and their derivatives in strong norm are obtained.
References:
[1] Agmon, S.: On the eigenfunctions and on the eigenvalue of general elliptic boundary value problems. Commun. Pure Appl. Math. 15 (1962), 119-147. DOI 10.1002/cpa.3160150203 | MR 0147774
[2] Ambethkar, V.: Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction. J. Naval Arch. Marine Eng. 5 (2008), 28-36.
[3] Babskii, V. G., Kopachevskii, N. D., Myshkis, A. D., Slobozhanin, L. A., Tyuptsov, A. D.: Fluid Mechanics of Weightlessness. Nauka Moscow (1976), Russian.
[4] Beckenbach, E., Bellman, R.: Inequalities. Springer Berlin (1965). MR 0192009 | Zbl 0186.09605
[5] Curry, J. H., Herring, J. R., Loncaric, J., Orszag, S. A.: Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech. 147 (1984), 1-38. DOI 10.1017/S0022112084001968 | Zbl 0547.76093
[6] Daly, B. J.: A numerical study of turbulence transitions in convective flow. J. Fluid Mech. 64 (1974), 129-165. DOI 10.1017/S0022112074002047 | Zbl 0282.76050
[7] Gershuni, G. Z., Zhuhovitsky, E. M.: Convective Stability of Incompressible Fluid. Nauka Moscow (1972), Russian.
[8] Glushko, V. P., Krejn, S. G.: Inequalities for the norms of derivative in spaces $L_p$ with weight. Sibirsk. Mat. Zh. 1 (1960), 343-382 Russian. MR 0133681
[9] Krejn, S. G.: Linear Differential Equations in Banach Spaces. Trans. Math. Monographs, Vol. 29. AMS Providence (1972).
[10] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach New York (1969). MR 0254401 | Zbl 0184.52603
[11] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Nauka Moscow (1967), English transl.: Trans. Math. Monographs, Vol. 23 AMS Rhode Island (1968). Zbl 0164.12302
[12] Shinbrot, M., Kotorynski, W. P.: The initial value problem for a viscous heat-conducting equations. J. Math. Anal. Appl. 45 (1974), 1-22. DOI 10.1016/0022-247X(74)90115-2 | MR 0361474
[13] Solonnikov, V. A.: On estimates of the solutions of elliptic and parabolic systems in $L_p$. Tr. MIAN SSSR 102 (1967), 137-160 Russian. MR 0228809
[14] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis. Rev. ed. North-Holland Publishing Company Amsterdam (1979). Zbl 0426.35003
[15] Vinogradova, P., Zarubin, A.: Projection method for Cauchy problem for operator-differential equation. Numer. Funct. Anal. Optim. 30 (2009), 148-167. DOI 10.1080/01630560902735132 | MR 2492080
[16] Werne, J., DeLuca, E. E., Rosner, R., Cattaneo, F.: Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection. Phys. Rev. Lett. 64 (1990), 2370-2373. DOI 10.1103/PhysRevLett.64.2370
Partner of
EuDML logo