Previous |  Up |  Next

Article

Keywords:
smoothed prolongations; rapid coarsening; massive smoothing; multigrid method; convergence; algebraic multigrid method; algorithm; V-cycle; W-cycle
Summary:
We prove that within the frame of smoothed prolongations, rapid coarsening between first two levels can be compensated by massive prolongation smoothing and pre- and post-smoothing derived from the prolongator smoother.
References:
[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comput. 57 (1991), 23-45. DOI 10.1090/S0025-5718-1991-1079008-4 | MR 1079008 | Zbl 0727.65101
[3] Brezina, M., Heberton, C., Mandel, J., Vaněk, P.: An iterative method with convergence rate chosen a priori UCD/CCM. Report No. 140 (1999).
[2] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes. SIAM J. Sci Comput. 21 (1999), 900-923. DOI 10.1137/S1064827596297112 | MR 1755171
[4] Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56 (1996), 179-196. DOI 10.1007/BF02238511 | MR 1393006
[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operators. Appl. Math. 37 (1992), 265-274. MR 1180605
[6] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations. Numer. Math. 88 (2001), 559-579. DOI 10.1007/s211-001-8015-y | MR 1835471
Partner of
EuDML logo