Previous |  Up |  Next

Article

Keywords:
vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
Summary:
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.
References:
[1] Aliprantis, C. D., Burkinshaw, O.: Positive Operators. Springer Berlin (2006). MR 2262133 | Zbl 1098.47001
[2] Basly, M., Triki, A.: FF-algèbres Archimédiennes réticulées. University of Tunis, Preprint (1988). MR 0964828
[3] Bernau, S. J., Huijsmans, C. B.: Almost $f$-algebras and $d$-algebras. Math. Proc. Camb. Philos. Soc. 107 (1990), 287-308. DOI 10.1017/S0305004100068560 | MR 1027782 | Zbl 0707.06009
[4] Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics Vol. 608. Springer Berlin-Heidelberg-New York (1977). MR 0552653
[5] Birkhoff, G., Pierce, R. S.: Lattice-ordered rings. Anais Acad. Brasil. Ci. 28 (1956), 41-69. MR 0080099 | Zbl 0070.26602
[6] Bu, Q., Buskes, G., Kusraev, A. G.: Bilinear Maps on Product of Vector Lattices: A Survey. Positivity. Trends in Mathematics. Birkhäuser Basel (2007), 97-126. MR 2382216
[7] Buskes, G., Pagter, B. de, Rooij, A. van: Functional calculus in Riesz spaces. Indag. Math. New Ser. 4 (1991), 423-436. DOI 10.1016/0019-3577(91)90028-6 | MR 1149692
[8] Buskes, G., Kusraev, A. G.: Representation and extension of orthoregular bilinear operators. Vladikavkaz. Math. Zh. 9 (2007), 16-29. MR 2434620
[9] Buskes, G., Rooij, A. van: Small Riesz spaces. Math. Proc. Camb. Philos. Soc. 105 (1989), 523-536. DOI 10.1017/S0305004100077902 | MR 0985689
[10] Buskes, G., Rooij, A. van: Almost $f$-algebras: Commutativity and the Cauchy-Schwarz inequality. Positivity 4 (2000), 227-231. DOI 10.1023/A:1009826510957 | MR 1797125
[11] Buskes, G., Rooij, A. van: Squares of Riesz spaces. Rocky Mt. J. Math. 31 (2001), 45-56. DOI 10.1216/rmjm/1008959667 | MR 1821367
[12] Buskes, G., Rooij, A. van: Bounded variation and tensor products of Banach lattices. Positivity 7 (2003), 47-59. DOI 10.1023/A:1025898718431 | MR 2028366
[13] Grobler, J. J., Labuschagne, C. C. A.: The tensor product of Archimedean ordered vector spaces. Math. Proc. Camb. Philos. Soc. 104 (1988), 331-345. DOI 10.1017/S0305004100065506 | MR 0948918 | Zbl 0663.46006
[14] Huijsmans, C. B., Pagter, B. de: Subalgebras and Riesz subspaces of an $f$-algebra. Proc. Lond. Math. Soc. III. Ser. 48 (1984), 161-174. DOI 10.1112/plms/s3-48.1.161 | MR 0721777 | Zbl 0534.46010
[15] Luxemburg, W. A. J., Zaanen, A. C.: Riesz spaces I. North-Holland Mathematical Library Amsterdam-London (1971). MR 0511676
[16] Nakano, H.: Product spaces of semi-ordered linear spaces. J. Fac. Sci., Hakkaidô Univ. Ser. I. 12 (1953), 163-210. MR 0062961 | Zbl 0051.33901
[17] Zaanen, A. C.: Riesz spaces II. North-Holland Mathematical Library Amsterdam-New York-Oxford (1983). MR 0704021 | Zbl 0519.46001
Partner of
EuDML logo