Previous |  Up |  Next

Article

Keywords:
delay differential equations; periodic solution; coincidence degree
Summary:
By using the coincidence degree theory of Mawhin, we study the existence of periodic solutions for $n$ th order delay differential equations with damping terms $x^{(n)}(t)=\sum \limits ^{s}_{i=1}b_{i}[x^{(i)}(t)]^{2k-1}+ f(x(t-\tau (t)))+p(t)$. Some new results on the existence of periodic solutions of the investigated equation are obtained.
References:
[1] Chen, X. R., Pan, L. J.: Existence of periodic solutions for $n$th order differential equations with deviating argument. Int. J. Pure. Appl. Math. 55 (2009), 319–333. MR 2561457 | Zbl 1185.34092
[2] Cong, F.: Periodic solutions for $2k$th order ordinary differential equations with resonance. Nonlinear Anal. 32 (1998), 787–793. DOI 10.1016/S0362-546X(97)00517-8 | MR 1612146
[3] Cong, F.: Existence of $2k+1$th order ordinary differential equations. Appl. Math. Lett. 17 (2004), 727–732. DOI 10.1016/S0893-9659(04)90112-7 | MR 2064187
[4] Cong, F., Huang, Q. D., Shi, S. Y.: Existence and uniqueness of periodic solutions for $2n+1$th order ordinary differential equations. J. Math. Anal. Appl. 241 (2000), 1–9. DOI 10.1006/jmaa.1999.6471 | MR 1738328
[5] Ezeilo, J. O. C.: On the existence of periodic solutions of a certain third–order differential equation. Proc. Cambridge Philos. Soc. 56 (1960), 381–389. MR 0121539 | Zbl 0097.29404
[6] Fabry, C., Mawhin, J., Nkashama, M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 10 (1986), 173–180. DOI 10.1112/blms/18.2.173 | MR 0818822 | Zbl 0586.34038
[7] Gaines, R. E., Mawhin, J.: Concidence degree and nonlinear differential equations. Lecture Notes in Math. 568 (1977), Berlin, New York, Springer–Verlag. MR 0637067
[8] Jiao, G.: Periodic solutions of $2n+1$th order ordinary differential equations. J. Math. Anal. Appl. 272 (2004), 691–699. MR 1930716
[9] Kiguradze, I. T., Půža, B.: On periodic solutions of system of differential equations with deviating arguments. Nonlinear Anal. 42 (2000), 229–242. DOI 10.1016/S0362-546X(98)00342-3 | MR 1773980
[10] Li, J. W., Wang, G. Q.: Sharp inequalities for periodic functions. Appl. Math. E-Notes 5 (2005), 75–83. MR 2112160 | Zbl 1076.26011
[11] Liu, B. W., Huang, L. H.: Existence of periodic solutions for nonlinear $n$th order ordinary differential equations. Acta Math. Sinica 47 (2004), 1133–1140, in Chinese. MR 2128079 | Zbl 1124.34334
[12] Liu, W. B., Li, Y.: The existence of periodic solutions for high order duffing equations. Acta Math. Sinica 46 (2003), 49–56, in Chinese. MR 1971712 | Zbl 1036.34052
[13] Liu, Y. J., Yang, P. H., Ge, W. G.: Periodic solutions of high–order delay differential equations. Nonlinear Anal. 63 (2005), 136–152. DOI 10.1016/j.na.2005.04.038 | MR 2167321
[14] Liu, Z. L.: Periodic solution for nonlinear $n$th order ordinary differential equation. J. Math. Anal. Appl. 204 (1996), 46–64. DOI 10.1006/jmaa.1996.0423
[15] Lu, S., Ge, W.: On the existence of periodic solutions for Lienard equation with a deviating argument. J. Math. Anal. Appl. 289 (2004), 241–243.
[16] Lu, S., Ge, W.: Sufficient conditions for the existence of periodic solutions to some second order differential equation with a deviating argument. J. Math. Anal. Appl. 308 (2005), 393–419. DOI 10.1016/j.jmaa.2004.09.010 | MR 2150099
[17] Mawhin, J.: Degré topologique et solutions périodiques des systémes différentiels nonlineaires. Bull. Soc. Roy. Sci. Liége 38 (1969), 308–398. MR 0594965
[18] Mawhin, J.: $L^{2}$–estimates and periodic solutions of some nonlinear differential equations. Boll. Unione Mat. Ital. 10 (1974), 343–354. MR 0369823
[19] Omari, P., Villari, G., Zanolin, F.: Periodic solutions of Lienard equation with one–side growth restrictions. J. Differential Equations 67 (1987), 278–293. DOI 10.1016/0022-0396(87)90151-3 | MR 0879698
[20] Pan, L. J.: Periodic solutions for higher order differential equations with deviating argument. J. Math. Anal. Appl. 343 (2008), 904–918. DOI 10.1016/j.jmaa.2008.01.096 | MR 2417111 | Zbl 1160.34065
[21] Pan, L. J., Chen, X. R.: Periodic solutions for $n$th order functional differential equations. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 109–126. MR 2656675 | Zbl 1202.34121
[22] Reissig, R.: Periodic solutions of third–order nonlinear differential equation. Ann. Mat. Pura Appl. 92 (1972), 193–198. DOI 10.1007/BF02417946 | MR 0316827
[23] Ren, J. L., Ge, W. G.: On the existence of periodic solutions for the second order functional differential equation. Acta Math. Sinica 47 (2004), 569–578, in Chinese. MR 2083276
[24] Srzednicki, S.: On periodic solutions of certain $n$th differential equations. J. Math. Anal. Appl. 196 (1995), 666–675. DOI 10.1006/jmaa.1995.1433 | MR 1362714
[25] Wang, G. Q.: Existence theorems of periodic solutions for a delay nonlinear differential equation with piecewise constant argument. J. Math. Anal. Appl. 298 (2004), 298–307. DOI 10.1016/j.jmaa.2004.05.016 | MR 2086548
[26] Zhang, Z. Q., Wang, Z. C.: Periodic solution of the third order functional differential equation. J. Math. Anal. Appl. 292 (2004), 115–134. DOI 10.1016/j.jmaa.2003.11.059 | MR 2050220
Partner of
EuDML logo