[1] Chen, X. R., Pan, L. J.:
Existence of periodic solutions for $n$th order differential equations with deviating argument. Int. J. Pure. Appl. Math. 55 (2009), 319–333.
MR 2561457 |
Zbl 1185.34092
[4] Cong, F., Huang, Q. D., Shi, S. Y.:
Existence and uniqueness of periodic solutions for $2n+1$th order ordinary differential equations. J. Math. Anal. Appl. 241 (2000), 1–9.
DOI 10.1006/jmaa.1999.6471 |
MR 1738328
[5] Ezeilo, J. O. C.:
On the existence of periodic solutions of a certain third–order differential equation. Proc. Cambridge Philos. Soc. 56 (1960), 381–389.
MR 0121539 |
Zbl 0097.29404
[6] Fabry, C., Mawhin, J., Nkashama, M. N.:
A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc. 10 (1986), 173–180.
DOI 10.1112/blms/18.2.173 |
MR 0818822 |
Zbl 0586.34038
[7] Gaines, R. E., Mawhin, J.:
Concidence degree and nonlinear differential equations. Lecture Notes in Math. 568 (1977), Berlin, New York, Springer–Verlag.
MR 0637067
[8] Jiao, G.:
Periodic solutions of $2n+1$th order ordinary differential equations. J. Math. Anal. Appl. 272 (2004), 691–699.
MR 1930716
[10] Li, J. W., Wang, G. Q.:
Sharp inequalities for periodic functions. Appl. Math. E-Notes 5 (2005), 75–83.
MR 2112160 |
Zbl 1076.26011
[11] Liu, B. W., Huang, L. H.:
Existence of periodic solutions for nonlinear $n$th order ordinary differential equations. Acta Math. Sinica 47 (2004), 1133–1140, in Chinese.
MR 2128079 |
Zbl 1124.34334
[12] Liu, W. B., Li, Y.:
The existence of periodic solutions for high order duffing equations. Acta Math. Sinica 46 (2003), 49–56, in Chinese.
MR 1971712 |
Zbl 1036.34052
[14] Liu, Z. L.:
Periodic solution for nonlinear $n$th order ordinary differential equation. J. Math. Anal. Appl. 204 (1996), 46–64.
DOI 10.1006/jmaa.1996.0423
[15] Lu, S., Ge, W.: On the existence of periodic solutions for Lienard equation with a deviating argument. J. Math. Anal. Appl. 289 (2004), 241–243.
[16] Lu, S., Ge, W.:
Sufficient conditions for the existence of periodic solutions to some second order differential equation with a deviating argument. J. Math. Anal. Appl. 308 (2005), 393–419.
DOI 10.1016/j.jmaa.2004.09.010 |
MR 2150099
[17] Mawhin, J.:
Degré topologique et solutions périodiques des systémes différentiels nonlineaires. Bull. Soc. Roy. Sci. Liége 38 (1969), 308–398.
MR 0594965
[18] Mawhin, J.:
$L^{2}$–estimates and periodic solutions of some nonlinear differential equations. Boll. Unione Mat. Ital. 10 (1974), 343–354.
MR 0369823
[21] Pan, L. J., Chen, X. R.:
Periodic solutions for $n$th order functional differential equations. Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 109–126.
MR 2656675 |
Zbl 1202.34121
[22] Reissig, R.:
Periodic solutions of third–order nonlinear differential equation. Ann. Mat. Pura Appl. 92 (1972), 193–198.
DOI 10.1007/BF02417946 |
MR 0316827
[23] Ren, J. L., Ge, W. G.:
On the existence of periodic solutions for the second order functional differential equation. Acta Math. Sinica 47 (2004), 569–578, in Chinese.
MR 2083276
[25] Wang, G. Q.:
Existence theorems of periodic solutions for a delay nonlinear differential equation with piecewise constant argument. J. Math. Anal. Appl. 298 (2004), 298–307.
DOI 10.1016/j.jmaa.2004.05.016 |
MR 2086548