Previous |  Up |  Next

Article

Keywords:
linear regression model with type-II constraints; orthogonal regression; estimation
Summary:
Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned approaches lead to the same estimates in a special case.
References:
[1] Anděl, J.: Statistical Methods. Matfyzpress, Praha, 2007, (in Czech).
[2] Caroll, R. J., Ruppert, D.: The use and misuse of orthogonal regression in linear errors-in-variables models. Am. Stat. 50 (1996), 1–6.
[3] Casella, G., Berger, R. L.: Statistical Inference. Duxbury Press, Pacific Grove, 2002, (sec. ed.).
[4] Fišerová, E., Hron, K.: Total least squares solution for compositional data using linear models. Journal of Applied Statistics 37 (2010), 1137–1152. DOI 10.1080/02664760902914532 | MR 2751926
[5] Fišerová, E., Kubáček, L., Kunderová, P.: Linear Statistical Models: Regularity and Singularities. Academia, Praha, 2007.
[6] Fuller, W. A.: Measurement Error Models. Wiley, New York, 1987. MR 0898653 | Zbl 0800.62413
[7] Hillegers, L. T. M. E.: The estimation of parameters in functional relationship models. Dissertation, Eindhoven University of Technology, Eindhoven, The Netherlands, 1986. MR 0874750
[8] Jackson, J. D., Dunlevy, J. A.: Orthogonal least squares and the interchangeability of alternative proxy variables in the social sciences. Journal of the Royal Statistical Society Series D (The Statistician) 37, 1 (1988), 7–14.
[9] Jolicoeur, P.: Interval estimation of the slope of the major axis of a bivariate normal distribution in the case of a small sample. Biometrics 24 (1968), 679–682. DOI 10.2307/2528326
[10] Kendall, M. G., Stuart, A.: The Advanced Theory of Statistics, Vol. 2. Charles Griffin, London, 1967.
[11] Kubáček, L., Kubáčková, L.: One of the calibration problems. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 36 (1997), 117–130. MR 1620541
[12] Markovsky, I., Van Huffel, S.: Overview of total least-squares methods. Signal Processing 87 (2007), 2283–2320. DOI 10.1016/j.sigpro.2007.04.004 | Zbl 1186.94229
[13] Nestares, O., Fleet, D. J., Heeger, D. J.: Likelihood functions and confidence bounds for total-least-squares problems. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’00) 1 (2000), 1523–1530.
[14] Van Huffel, S., Lemmerling, P.: Total Least Squares and Errors-in-Variables Modelling: Analysis, Algorithms and Applications. Kluwer, Dordrecht, 2002. MR 1951009
[15] Van Huffel, S., Vandevalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, 1991. MR 1118607
[16] Wimmer, G., Witkovský, V.: Univariate linear calibration via replicated errors-in-variables model models. J. Stat. Comput. Simul. 77 (2007), 213–227. DOI 10.1080/10629360600679433 | MR 2345730
Partner of
EuDML logo