[3] Gänssler, P., Stute, W.:
Wahrscheinlichkeitstheorie. Springer–Verlag, Berlin – Heidelberg 1977.
MR 0501219
[4] Gersch, O.: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization. PhD Thesis. Technische Universität Ilmenau 2007.
[6] Lagodowski, A., Rychlik, Z.:
Weak convergence of probability measures on the function space $D_d[0,\infty )$. Bull. Polish Acad. Sci. Math. 34 (1986), 329–335.
MR 0874876
[9] Pflug, G. Ch.:
Asymptotic dominance and confidence for solutions of stochastic programs. Czechoslovak J. Oper. Res. 1 (1992), 21–30.
Zbl 1015.90511
[11] Rockafellar, R. T., Wets, R. J.-B.:
Variational Analysis. Springer–Verlag, Berlin – Heidelberg 1998.
MR 1491362 |
Zbl 0888.49001
[12] Royden, H. L.:
Real Analysis. Third edition Macmillan Publishing Company, New York 1988.
MR 1013117 |
Zbl 0704.26006
[13] Salinetti, G., Wets, R. J.-B.:
On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419.
DOI 10.1287/moor.11.3.385 |
MR 0852332 |
Zbl 0611.60004
[14] Vaart, A. W. van der, Wellner, J. A.:
Weak Convergence and Empirical Processes. Springer–Verlag, New York 1996.
MR 1385671
[16] Vogel, S.:
Semiconvergence in distribution of random closed sets with applications to random optimization problems. Ann. Oper. Res. 142 (2006), 269–282.
DOI 10.1007/s10479-006-6172-0 |
MR 2222921