Previous |  Up |  Next

Article

Keywords:
$\epsilon$-argmin of stochastic process; random closed sets; weak convergence of Hoffmann--Jørgensen; Fell-topology; Missing-topology
Summary:
Let $\epsilon-\text(Z)$ be the collection of all $\epsilon$-optimal solutions for a stochastic process $Z$ with locally bounded trajectories defined on a topological space. For sequences $(Z_n)$ of such stochastic processes and $(\epsilon_n)$ of nonnegative random variables we give sufficient conditions for the (closed) random sets $\epsilon_n-\text(Z_n)$ to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.
References:
[1] Billingsley, P.: Convergence of Probability Measures. John Wiley & Sons, New York 1968. MR 0233396 | Zbl 0172.21201
[2] Ferger, D.: A continuous mapping theorem for the Argmax-functional in the non-unique case. Statist. Neerlandica 58 (2004), 83–96. DOI 10.1046/j.0039-0402.2003.00111.x | MR 2042258 | Zbl 1090.60032
[3] Gänssler, P., Stute, W.: Wahrscheinlichkeitstheorie. Springer–Verlag, Berlin – Heidelberg 1977. MR 0501219
[4] Gersch, O.: Convergence in Distribution of Random Closed Sets and Applications in Stability Theory and Stochastic Optimization. PhD Thesis. Technische Universität Ilmenau 2007.
[5] Kallenberg, O.: Foundations of Modern Probability. Springer–Verlag, New York 1997. MR 1464694 | Zbl 0892.60001
[6] Lagodowski, A., Rychlik, Z.: Weak convergence of probability measures on the function space $D_d[0,\infty )$. Bull. Polish Acad. Sci. Math. 34 (1986), 329–335. MR 0874876
[7] Lindvall, T.: Weak convergence of probability measures and random functions in the function space $D[0,\infty )$. J. Appl. Probab. 10 (1973), 109–121. DOI 10.2307/3212499 | MR 0362429 | Zbl 0258.60008
[8] Norberg, T.: Convergence and existence of random set distributions. Ann. Probab. 12 (1984), 726–732. DOI 10.1214/aop/1176993223 | MR 0744229 | Zbl 0545.60021
[9] Pflug, G. Ch.: Asymptotic dominance and confidence for solutions of stochastic programs. Czechoslovak J. Oper. Res. 1 (1992), 21–30. Zbl 1015.90511
[10] Pflug, G. Ch.: Asymptotic stochastic orograms. Math. Oper. Res. 20 (1995), 769–789. DOI 10.1287/moor.20.4.769 | MR 1378105
[11] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis. Springer–Verlag, Berlin – Heidelberg 1998. MR 1491362 | Zbl 0888.49001
[12] Royden, H. L.: Real Analysis. Third edition Macmillan Publishing Company, New York 1988. MR 1013117 | Zbl 0704.26006
[13] Salinetti, G., Wets, R. J.-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419. DOI 10.1287/moor.11.3.385 | MR 0852332 | Zbl 0611.60004
[14] Vaart, A. W. van der, Wellner, J. A.: Weak Convergence and Empirical Processes. Springer–Verlag, New York 1996. MR 1385671
[15] Vogel, S.: Qualitative stability of stochastic programs with applications in asymptotic statistics. Statist. Decisions 23 (2005), 219–248. DOI 10.1524/stnd.2005.23.3.219 | MR 2236458 | Zbl 1093.62032
[16] Vogel, S.: Semiconvergence in distribution of random closed sets with applications to random optimization problems. Ann. Oper. Res. 142 (2006), 269–282. DOI 10.1007/s10479-006-6172-0 | MR 2222921
Partner of
EuDML logo