Previous |  Up |  Next

Article

Keywords:
manifold of functions; fiber integral; diffeomorphism group
Summary:
Differential forms on the Fréchet manifold $\mathcal{F}(S,M)$ of smooth functions on a compact $k$-dimensional manifold $S$ can be obtained in a natural way from pairs of differential forms on $M$ and $S$ by the hat pairing. Special cases are the transgression map $\Omega ^p(M)\rightarrow \Omega ^{p-k}(\mathcal{F}(S,M))$ (hat pairing with a constant function) and the bar map $\Omega ^p(M)\rightarrow \Omega ^p(\mathcal{F}(S,M))$ (hat pairing with a volume form). We develop a hat calculus similar to the tilda calculus for non-linear Grassmannians [6].
References:
[1] Alekseev, A., Strobl, T.: Current algebras and differential geometry. J. High Energy Phys. 03 (2005), 14. MR 2151966
[2] Bonelli, G., Zabzine, M.: From current algebras for $p$–branes to topological $M$–theory. J. High Energy Phys. 09 (2005), 15. DOI 10.1088/1126-6708/2005/09/015 | MR 2171351
[3] Brylinski, J.–L.: Loop spaces, characteristic classes and geometric quantization. vol. 107, Progr. Math., Birkhäuser, 1993. MR 1197353 | Zbl 0823.55002
[4] Gay–Balmaz, F., Vizman, C.: Dual pairs in fluid dynamics. Ann. Global Anal. Geom. (2011). DOI 10.1007/s10455-011-9267-z | MR 2860394
[5] Greub, W., Halperin, S., Vanstone, R.: Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles. Pure and Applied Mathematics, vol. 47, Academic Press, New York–London, 1972. MR 0336650 | Zbl 0322.58001
[6] Haller, S., Vizman, C.: Non-linear Grassmannians as coadjoint orbits. Math. Ann. 329 (2004), 771–785. DOI 10.1007/s00208-004-0536-z | MR 2076685
[7] Hirsch, M. W.: Differential topology. vol. 33, Springer, 1976, Grad. Texts in Math. MR 0448362 | Zbl 0356.57001
[8] Ismagilov, R. S.: Representations of infinite–dimensional groups. vol. 152, Ams. Math. Soc., 1996, Translations of Mathematical Monographs. MR 1393939 | Zbl 0856.22001
[9] Ismagilov, R. S., Losik, M., Michor, P. W.: A 2–cocycle on a group of symplectomorphisms. Moscow Math. J. 6 (2006), 307–315. MR 2270616
[10] Kriegl, A., Michor, P. W.: The convenient setting of global analysis. vol. 53, Math. Surveys Monogr., 1997. MR 1471480 | Zbl 0889.58001
[11] Marsden, J. E., Ratiu, T.: Introduction to Mechanics and Symmetry. 2nd ed., Springer, 1999. MR 1723696 | Zbl 0933.70003
[12] Marsden, J. E., Weinstein, A.: Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D 7 (1983), 305–323. DOI 10.1016/0167-2789(83)90134-3 | MR 0719058 | Zbl 0576.58008
[13] Michor, P. W.: Manifolds of differentiable mappings. vol. 3, Shiva Math. Series, Shiva Publishing Ltd., Nantwich, 1980. MR 0583436 | Zbl 0433.58001
[14] Roger, C.: Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations. Rep. Math. Phys. 35 (1995), 225–266. DOI 10.1016/0034-4877(96)89288-3 | MR 1377323 | Zbl 0892.17018
[15] Vizman, C.: Lichnerowicz cocycles and central Lie group extensions. An. Univ. Vest Timis., Ser. Mat.–Inform. 48 (1–2) (2010), 285–297. MR 2849342 | Zbl 1224.58009
Partner of
EuDML logo