Previous |  Up |  Next

Article

Keywords:
gradient estimates; positive solution; Bakry-Emery Ricci tensor
Summary:
Let $(M,g)$ be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation $\Delta_fu+cu^{-\alpha}=0$ in $M$, where $\alpha$, $c$ are two real constants and $\alpha>0$, $f$ is a smooth real valued function on $M$ and $\Delta_f=\Delta-\nabla f\nabla$. When $N$ is finite and the $N$-Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that $\infty$-Bakry-Emery Ricci tensor is bounded from below and $|\nabla f|$ is bounded from above, we also obtain a gradient estimate for positive solutions of the above equation. It extends the results of Yang [Yang, Y.Y. Gradient estimates for the equation $\Delta u+cu^{-\alpha}=0$ on Riemannian manifolds Acta. Math. Sin. 26(B) 2010 1177–1182].
References:
[1] Calabi, E.: An extension of E.Hopf’s maximum principle with application to Riemannian geometry. Duke Math. J. 25 1957 45–46 DOI 10.1215/S0012-7094-58-02505-5 | MR 0092069
[2] Chen, L., Chen, W.Y.: Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds. Ann. Glob. Anal. Geom. 35 2009 397–404 DOI 10.1007/s10455-008-9141-9 | MR 2506242 | Zbl 1177.35040
[3] Chen, L., Chen, W.Y.: Gradient estimates for positive smooth $f$-harmonic functions. Acta Math. Sci. 30(B) 2010 1614–1618 MR 2778630 | Zbl 1240.58019
[4] Cheng, S.Y., Yau, S.T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure. Appl. Math. 28 1975 333–354 DOI 10.1002/cpa.3160280303 | MR 0385749 | Zbl 0312.53031
[5] Guo, Z.M., Wei, J.C.: Hausdorff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscripta Math. 120 2006 193–209 DOI 10.1007/s00229-006-0001-2 | MR 2234248
[6] Hsu, S.Y.: Gradient estimates for a nonlinear parabolic equation under Ricci. arXiv: 0806.4004
[7] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Arch. Math. (Basel) 94 2010 265–275 DOI 10.1007/s00013-009-0091-7 | MR 2602453 | Zbl 1194.58020
[8] Li, J.Y.: Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J. Funct. Anal. 100 1991 233–256 DOI 10.1016/0022-1236(91)90110-Q | MR 1125225 | Zbl 0746.58078
[9] Li, X.D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pures Appl. 84 2005 1295–1361 MR 2170766 | Zbl 1082.58036
[10] Ma, L.: Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds. J. Funct. Anal. 241 2006 374–382 DOI 10.1016/j.jfa.2006.06.006 | MR 2264255 | Zbl 1112.58023
[11] Ma, L., Liu, B.Y.: Convexity of the first eigenfunction of the drifting Laplacian operator and its applications. New York J. Math. 14 2008 393–401 MR 2443979 | Zbl 1156.35065
[12] Ma, L., Liu, B.Y.: Convex eigenfunction of a drifting Laplacian operator and the fundamental gap. Pacific J. Math. 240 2009 343–361 DOI 10.2140/pjm.2009.240.343 | MR 2485469 | Zbl 1162.35059
[13] Qian, Z.M.: A comparison theorem for an elliptic operator. Potential Analysis 8 1998 137–142 DOI 10.1023/A:1008698923961 | MR 1618434 | Zbl 0930.58012
[14] Wei, G.F., Wylie, W.: Comparison geometry for the Bakry-Emery Ricci tensor. J. Differential Geometry 83 2009 377–405 MR 2577473 | Zbl 1189.53036
[15] Yang, Y.Y.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc. Amer. Math. Soc. 136 2008 4095–4102 DOI 10.1090/S0002-9939-08-09398-2 | MR 2425752 | Zbl 1151.58013
[16] Yang, Y.Y.: Gradient estimates for the equation $\Delta u+cu^{-\alpha }=0$ on Riemannian manifolds. Acta. Math. Sin. 26(B) 2010 1177–1182 DOI 10.1007/s10114-010-7531-y | MR 2644055 | Zbl 1203.58006
Partner of
EuDML logo