Previous |  Up |  Next

Article

Keywords:
calculus of variations; parametric problems
Summary:
This paper describes some recent research on parametric problems in the calculus of variations. It explains the relationship between these problems and the type of problem more usual in physics, where there is a given space of independent variables, and it gives an interpretation of the first variation formula in this context in terms of cohomology.
References:
[1] Anderson, I.M.: The variational bicomplex. book preprint, technical report of the Utah State University, 1989 Available at http://www.math.usu.edu/fg_mp/ MR 1188434 | Zbl 0881.35069
[2] Bao, D., Chern, S.-S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer 2000 MR 1747675 | Zbl 0954.53001
[3] Crampin, M., Saunders, D.J.: The Hilbert-Carathéodory form for parametric multiple integral problems in the calculus of variations. Acta Appl. Math. 76 (1) 2003 37–55 DOI 10.1023/A:1022862117662 | MR 1967453 | Zbl 1031.53106
[4] Crampin, M., D.J. Saunders: The Hilbert-Carath´eodory and Poincar´e-Cartan forms for higher-order multiple-integral variational problems. Houston J. Math. 30 (3) 2004 657–689 MR 2083869
[5] M. Crampin, D.J. Saunders: On null Lagrangians. Diff. Geom. Appl. 22 (2) 2005 131–146 MR 2122738
[6] Crampin, M., Saunders, D.J.: Homotopy Operators for the Variational Bicomplex, Representations of the Euler-Lagrange Complex, and the Helmholtz-Sonin Conditions. Lobachevskii J. Math. 30 (2) 2009 107–123 DOI 10.1134/S1995080209020036 | MR 2525126 | Zbl 1177.49056
[7] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer 1993 MR 1202431
[8] Krupka, D.: Lepagean forms and higher order variational theories. Proceedings of the IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics , S. Benenti, M. Francaviglia, A. Lichnerowicz (eds.)Tecnoprint 1983 197–238 MR 0773488
[9] Rund, H.: The Hamilton-Jacobi Equation in the Calculus of Variations. Krieger 1973
[10] Saunders, D.J.: The geometry of jet bundles. Cambridge University Press 1989 MR 0989588 | Zbl 0665.58002
[11] Saunders, D.J.: Jet manifolds and natural bundles. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1035–1068 MR 2389651 | Zbl 1236.58006
[12] Saunders, D.J.: Homogeneous variational complexes and bicomplexes. J. Geom. Phys. 59 2009 727–739 MR 2510165 | Zbl 1168.58006
[13] Tulczyjew, W.M.: The Euler-Lagrange resolution. Lecture Notes in Mathematics 836 , Springer 1980 22–48 DOI 10.1007/BFb0089725 | MR 0607685 | Zbl 0456.58012
[14] Vinogradov, A.M.: The $\mathcal {C}$-spectral sequence, Lagrangian formalism and conservation laws. J. Math. Anal. Appl. 100 1984 1–129 DOI 10.1016/0022-247X(84)90071-4 | MR 0739951
[15] Vitolo, R.: Variational sequences. Handbook of Global Analysis , D. Krupka, D.J. Saunders (eds.)Elsevier 2008 1115–1163 MR 2389653 | Zbl 1236.58029
Partner of
EuDML logo