[3] Chen, M. H., Ishii, H., Wu, C. X.: Transportation problems on a fuzzy network. Internat. J. Innovative Computing, Information and Control 4 (2008), 1105–1109.
[4] Dantzig, G. B.:
Application of the simplex method to a transportation problem. In: Activity Analysis of Production and Allocation, Chapter 23, Cowles Commission Monograph 13. Wiley, New York 1951.
MR 0056262 |
Zbl 0045.09901
[7] Geetha, S., Nair, K. P. K.:
A stochastic bottleneck transportation problem. J. Oper. Res. Soc. 45 (1994), 583–588.
Zbl 0807.90090
[8] Hammer, P. L.:
Time minimizing transportation problem. Naval Res. Logist. Quart. 16 (1969), 345–357.
MR 0260422
[9] Hitchcock, F. L.:
The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941), 224–230.
MR 0004469 |
Zbl 0026.33904
[10] Ishii, H.:
Competitive transportation problem. Central Europ. J. Oper. Res. 12 (2004), 71–78.
MR 2060702
[11] Ishii, H., Ge, Y.:
Fuzzy transportation problem with random transportation costs. Scient. Math. Japon. 70 (2009), 151–157.
MR 2555732 |
Zbl 1188.90266
[12] Ishii, H., Tada, M., Nishida, T.:
Fuzzy transportation problem. J. Japan Soc. Fuzzy Theory and System 2 (1990), 79–84.
Zbl 0807.90129
[13] Lin, F. T., Tsai, T. R.: A two-stage genetic algorithm for solving the transportation problem with fuzzy demands and fuzzy supplies. Internat. J. Innov. Comput. Inform. Control 5 (2009), 4775–4785.
[15] Srinivasan, V., Thompson, G. L.:
An operator theory of parametric programming for the transportation-I. Naval Res. Logist. Quart. 19 (1972), 205–226.
DOI 10.1002/nav.3800190202 |
MR 0321525
[18] Tada, M., Ishii, H., Nishida, T.:
Fuzzy transportation problem with integral flow. Math. Japon. 35 (1990), 335–341.
MR 1049099 |
Zbl 0712.90047