Title:
|
On a class of estimators in a multivariate RCA(1) model (English) |
Author:
|
Prášková, Zuzana |
Author:
|
Vaněček, Pavel |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
2011 |
Pages:
|
501-518 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This work deals with a multivariate random coefficient autoregressive model (RCA) of the first order. A class of modified least-squares estimators of the parameters of the model, originally proposed by Schick for univariate first-order RCA models, is studied under more general conditions. Asymptotic behavior of such estimators is explored, and a lower bound for the asymptotic variance matrix of the estimator of the mean of random coefficient is established. Finite sample properties are demonstrated in a small simulation study. (English) |
Keyword:
|
multivariate RCA models |
Keyword:
|
parameter estimation |
Keyword:
|
asymptotic variance matrix |
MSC:
|
60F05 |
MSC:
|
60G10 |
MSC:
|
60G46 |
MSC:
|
62M10 |
idZBL:
|
Zbl 1226.62084 |
idMR:
|
MR2884857 |
. |
Date available:
|
2011-09-23T11:14:28Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/141654 |
. |
Reference:
|
[1] Aue, A., Horváth, L., Steinebach, J.: Estimation in random coefficient autoregressive models.J. Time Ser. Anal. 27 (2006), 60–67. Zbl 1112.62084, MR 2235147 |
Reference:
|
[2] Hwang, S. Y., Basawa, I. V.: Parameter estimation for generalized random coefficient autoregressive processes.J. Statist. Plann. Inference 68 (1998), 323–337. Zbl 0942.62102, MR 1629591, 10.1016/S0378-3758(97)00147-X |
Reference:
|
[3] Berkes, I., Horváth, L., Ling, S.: Estimation in nonstationary random coefficient autoregressive models.J. Time Ser. Anal. 30 (2009), 395–416. Zbl 1224.62046, MR 2536060, 10.1111/j.1467-9892.2009.00615.x |
Reference:
|
[4] Billingsley, P.: The Lindeberg–Lévy theorem for martingales.Proc. Amer. Math. Soc. 12 (1961), 788–792. Zbl 0129.10701, MR 0126871 |
Reference:
|
[5] Brandt, A.: The stochastic equation $Y_{n+1} = A_n Y_n + B_n$ with stationary coefficients.Adv. Appl. Probab. 18 (1986), 211–220. MR 0827336, 10.2307/1427243 |
Reference:
|
[6] Bougerol, P., Picard, N.: Strict stationarity of generalized autoregressive processes.Ann. Probab. 20 (1992), 1714–1730. Zbl 0763.60015, MR 1188039, 10.1214/aop/1176989526 |
Reference:
|
[7] Davidson, J.: Stochastic Limit Theory.Advanced Texts in Econometrics. Oxford University Press, Oxford 1994. MR 1430804 |
Reference:
|
[8] Feigin, P. D., Tweedie, R. L.: Random coefficient autoregressive processes: A Markov chain analysis of stationarity and finiteness of moments.J. Time Ser. Anal. 6 (1985), 1–14. Zbl 0572.62069, MR 0792428, 10.1111/j.1467-9892.1985.tb00394.x |
Reference:
|
[9] Janečková, H., Prášková, Z.: CWLS and ML estimates in a heteroscedastic RCA(1) model.Statist. Decisions 22 (2004), 245–259. Zbl 1057.62071, MR 2125611, 10.1524/stnd.22.3.245.57064 |
Reference:
|
[10] Koul, H. L., Schick, A.: Adaptive estimation in a random coefficient autoregressive model.Ann. Statist. 24 (1996), 1025–1052. Zbl 0906.62087, MR 1401835, 10.1214/aos/1032526954 |
Reference:
|
[11] Nicholls, D. F., Quinn, B. G.: Random coefficient autoregressive models: An introduction.Lecture Notes in Statistics 11, Springer, New York 1982. Zbl 0497.62081, MR 0671255, 10.1007/978-1-4684-6273-9 |
Reference:
|
[12] Schick, A.: $\sqrt{n}$-consistent estimation in a random coefficient autoregressive model.Austral. J. Statist. 38 (1996), 155–160. MR 1442543, 10.1111/j.1467-842X.1996.tb00671.x |
Reference:
|
[13] Schott, J.: Matrix Analysis for Statistics.Wiley Series in Probability and Statistics, Wiley, New York 1996. MR 2111601 |
Reference:
|
[14] Vaněček, P.: Rate of convergence for a class of RCA estimators.Kybernetika 6 (2006), 698–709. Zbl 1249.60034 |
Reference:
|
[15] Vaněček, P.: Estimators of multivariate RCA models.In: Bull. Internat. Statistical Institute LXII (M. I. Gomes at al., eds.), Instituto Nacional de Estatística, Lisbon 2007, pp. 4027–4030. |
Reference:
|
[16] Vaněček, P.: Estimation of Random Coefficient Autoregressive Models.PhD Thesis, Charles University, Prague 2008. |
. |