Previous |  Up |  Next

Article

Keywords:
semilattice; distributivity; pseudocomplementation; congruence; kernel ideal; cokernel
Summary:
A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.
References:
[1] Begum, S. N., Noor, A. S. A.: Some characterizations of modular and distributive JP-semilattices. Submitted.
[2] Blyth, T. S.: Ideals and filters of pseudo-complemented semilattices. Proc. Edinb. Math. Soc., II. Ser. 23 (1980), 301-316. DOI 10.1017/S0013091500003850 | MR 0620927 | Zbl 0484.06004
[3] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43-52. MR 2321296
[4] Chajda, I., Kolařík, M.: A decomposition of homomorphic images of near lattices. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 45 (2006), 43-52. MR 2321296
[5] Chajda, I., Kolařík, M.: Nearlattices. Discrete Math. 308 (2008), 4906-4913. DOI 10.1016/j.disc.2007.09.009 | MR 2446101 | Zbl 1151.06004
[6] Cornish, W. H.: Congruence on distributive pseudo-complemented lattices. Bull. Austral. Math. Soc. 82 (1973), 161-179. DOI 10.1017/S0004972700042404 | MR 0318024
[7] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices. Acta Math. Acad. Sci. Hungar. 32 (1978), 5-16. DOI 10.1007/BF01902195 | MR 0551490 | Zbl 0497.06005
[8] Cornish, W. H., Noor, A. S. A.: Standard elements in a nearlattice. Bull. Austral. Math. Soc. 26 (1982), 185-213. DOI 10.1017/S0004972700005700 | MR 0683652 | Zbl 0523.06006
[9] Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. Freeman (1971). MR 0321817
[10] Grätzer, G.: General Lattice Theory. Birkhäuser (1978). MR 0504338
[11] Hickman, R. C.: Distributivity in Semilattices. Ph.D. Thesis, The Flinders University of South Australia (1978). MR 0551491 | Zbl 0389.06003
[12] Noor, A. S. A., Cornish, W. H.: Multipliers on a nearlattice. Comment Math. Univ. Carolin. 27 (1986), 815-827. MR 0874675 | Zbl 0605.06005
[13] Murty, P. V. Ramana, Rao, V. V. Rama: Characterization of certain classes of pseudo complemented semi-lattices. Algebra Universalis 4 (1974), 289-300. DOI 10.1007/BF02485741 | MR 0366763
Partner of
EuDML logo