Previous |  Up |  Next

Article

Keywords:
fractional derivative; impulsive equations; positive solutions; fixed point theorem; monotone iterative method
Summary:
In this paper, we consider a fractional impulsive boundary value problem on infinite intervals. We obtain the existence, uniqueness and computational method of unbounded positive solutions.
References:
[1] Agarwal, R. P., O'Regan, D.: Multiple nonnegative solutions for second order impulsive differential equations. Appl. Math. Comput. 114 (2000), 51-59. DOI 10.1016/S0096-3003(99)00074-0 | MR 1775121 | Zbl 1047.34008
[2] Ahmeda, E., Elgazzar, A. S.: On fractional order differential equations model for nonlocal epidemics. Physic A 379 (2007), 607-614. DOI 10.1016/j.physa.2007.01.010
[3] Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505. DOI 10.1016/j.jmaa.2005.02.052 | MR 2168413 | Zbl 1079.34048
[4] Ding, W., Han, M.: Periodic boundary value problem for the second order impulsive functional differential equations. Appl. Math. Comput. 155 (2004), 709-726. DOI 10.1016/S0096-3003(03)00811-7 | MR 2078208 | Zbl 1102.34324
[5] He, J. H.: Nonlinear oscillation with fractional derivative and its applications. In: International Conference on Vibrating Engineering, Dalian, China (1998), 288-291.
[6] He, J. H.: Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 15 (1999), 86-90.
[7] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68. DOI 10.1016/S0045-7825(98)00108-X | MR 1665221 | Zbl 0942.76077
[8] Hristova, S. G., Bainov, D. D.: Monotone-iterative techniques of V. Lakshmikantham for a boundary value problem for systems of impulsive differential-difference equations. J. Math. Anal. Appl. 197 (1996), 1-13. DOI 10.1006/jmaa.1996.0001 | MR 1371270 | Zbl 0849.34051
[9] Lee, E. K., Lee, Y.-H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation. Appl. Math. Comput. 158 (2004), 745-759. DOI 10.1016/j.amc.2003.10.013 | MR 2095700
[10] Liu, X., Guo, D.: Periodic boundary value problems for a class of second-order impulsive integro-differential equations in Banach spaces. J. Math. Anal. Appl. 216 (1997), 284-302. DOI 10.1006/jmaa.1997.5688 | MR 1487265 | Zbl 0889.45016
[11] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics A. Carpinteri, F. Mainardi Springer New York (1997), 291-348. MR 1611587
[12] Ouahab, A.: Some results for fractional boundary value problem of differential inclusions. Nonlinear Anal., Theory Methods Appl. 69 (2008), 3877-3896. DOI 10.1016/j.na.2007.10.021 | MR 2463341 | Zbl 1169.34006
[13] Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22 (2009), 64-69. DOI 10.1016/j.aml.2008.03.001 | MR 2483163 | Zbl 1163.34321
[14] Wei, Z.: Periodic boundary value problems for second order impulsive integrodifferential equations of mixed type in Banach spaces. J. Math. Anal. Appl. 195 (1995), 214-229. DOI 10.1006/jmaa.1995.1351 | MR 1352819 | Zbl 0849.45006
[15] Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259 (2001), 94-114. DOI 10.1006/jmaa.2000.7392 | MR 1836447 | Zbl 1009.34059
[16] Yan, B., Liu, Y.: Unbounded solutions of the singular boundary value problems for second order differential equations on the half-line. Appl. Math. Comput. 147 (2004), 629-644. DOI 10.1016/S0096-3003(02)00801-9 | MR 2011077 | Zbl 1045.34009
Partner of
EuDML logo