[1] al., R. Bock et: Glaucoma risk index: automated glaucoma detection from color fundus images. Medical Image Analysis 14 (2000), 3, 471–481.
[2] Brinkmann, B. H., Manduca, A., Robb, R. A.:
Optimised homomorphic unsharp masking for MR greyscale inhomogeneity correction. IEEE Trans. Med. Imag. 17 2, 161–171.
DOI 10.1109/42.700729
[3] Budenz, D. L.:
Reproducibility of retinal nerve fiber thickness measurements using the stratus OCT in normal and glaucomatous eyes. Invest. Ophthalmology and Visual Science 46 (2005), 2440–2443.
DOI 10.1167/iovs.04-1174
[4] Bellmann, C:
Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope. Ophthalmology 94 (1997), 385–91.
DOI 10.1007/s003470050130
[5] Chanwimaluang, T., Fan, G.: An efficient blood vessel detection algorithm for retinal images using local entropy tresholding. Proc. Int. Symp. Circuits & Systems’03, 5 (2003), 21–24.
[6] Chrástek, R., Niemann, H., Kubečka, L., Jan, J., Derhartunian, V., Michelson, G.: Optic nerve head segmentation in multimodal retinal images. In: Proc. SPIE 2005, Bellingham 2005, pp. 1604–1615.
[7] al., R. Chrástek et: Segmentation of the optic nerve head for glaucoma diagnosis. In: Proc. SPIE 2005, Bellingham 2005, pp. 1604–1615.
[8] Ciulla, T. A., Regillo, C. D., Harris, A. H.: Retina and Optic Nerve Imaging. Lippincott Williams and Wilkins, Philadelphia 2003.
[9] Cree, M. J., Cornforth, D., Jelinek, H. F.: Vessel segmentation and tracking using a two-dimensional model. IVC New Zealand (2005), 345–350.
[10] Dawant, B. M., Zijdenbos, P., Margolin, R. A.:
Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Trans. Med. Imag. 12 (1993), 4, 770–781.
DOI 10.1109/42.251128
[11] al., F. C. Delori et: In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest. Ophthalmol. Vis. Sci. 12 (1995), 718–29.
[12] Dodson, P. M.: Diabetic Retinopathy. Oxford University Press 2008.
[13] Figueiredo, M. A. T., Jain, A. K.:
Unsupervised learning of finite mixture models. IEEE Trans. Pattern Analysis and Machine Intelligence 24 (2002), 3, 381–396.
DOI 10.1109/34.990138
[14] al., M. J. Greaney et: Comparison of optic nerve imaging methods to distinguish normal eyes from those with glaucoma. Invest Ophthalmol Vis. Sci. 43 (2002), 1, 140–145.
[15] al., E. Grisan et: A new tracking system for robust extraction of retinal vessel structure. In: Proc. 26th IEEE EMBC 2004, San Francisco 2004, pp. 1620–1623.
[16] Gazárek, J., Kolář, R., Jan, J., Odstrčilík, J.: Blood vessel tree recontruction in retinal OCT data. In: Proc. EURASIP Conf. BIOSIGNAL 2010, Brno 2010, CD issue, 4 pp.
[17] Guillemaud, R., Brady, M.:
Estimating the bias field of MR images. IEEE Trans. Med. Imag. 16 (1997), 3, 238–251.
DOI 10.1109/42.585758
[18] al., Y. Hayashi et: Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering. In: Proc. of SPIE 6514 (2006).
[19] Hoh, St.: Evaluating the optic nerve head and retinal nerve fibre layer: The role of Heidelberg retina tomography, scanning laser polarimetry and optical coherence tomography. Annals Academy of Medicine 16 (2007), 195–202.
[20] Jan, J., Odstrčilík, J., Gazárek, J., Kolář., R.: Retinal image analysis aimed at early detection of neural-layer deterioration. Submitted.
[21] Jan, J., Chrástek, R., Kubečka, L.: Automated optic disc segmentation in multimodal images of retina. In: Proc. DOG/SOE Congress 2005, Berlin 2005, CD issue.
[22] Jan, J., al., R. Kolář et: Analysis of fused ophthalmologic image data. In: Proc. 6th EURASIP conf. Speech & Image Processing, Multimedia Communications & Services, Maribor 2007, pp. 37–40.
[23] Jan, J.: Retinal image analysis – Brno group). In: SAOT Retina Image Processing Workshop 2009, Erlangen Univ.
[24] Jan, J.: Retinal image analysis aimed at blood vessel structure segmentation and neural layer detection. In: Proc. BEC 2008, Tallin 2008, pp. 31–38
[25] Jan, J.: Medical Image Processing, Reconstruction and Restoration – Concepts and Methods. CRC Press, Taylor and Francis Group 2006.
[26] Jan, J., Odstrčilík, J., Gazárek, J., Kolář, R.: Retinal image analysis aimed at support of early neural-layer deterioration diagnosis. In: Proc. ITAB 2009, Larnaca, 4 pp., CD issue.
[27] Janknecht, P., Funk, J.:
Optic nerve head analyser and Heidelberg retina tomograph: accuracy and reproducibility of topographic measurements in a model eye and in volunteers. British Journal of Ophthalmology 78 (1994), 760–768.
DOI 10.1136/bjo.78.10.760
[28] Jorge, J., Leandro, G., al., M. Roberto et: Vessels segmentation in retina: Preliminary assessment of the mathematical morphology and of the wavelet transform techniques. In: XIV Brazilian SIBGRAPI’01 2001, pp. 84–91.
[29] Kolář, R., Šikula, V., Base, M.: Retinal image registration using phase correlation. In: Proc. 20th EURASIP Conf. BIOSIGNAL 2010, Brno 2010, CD issue, 4 pp.
[30] Kolář, R., Jan, J., Chrástek, R., Laemmer, R., Mardin, Ch. Y.: Autofluorescence areas detection in HRA images. In: Proc. EMBEC’05, Prague 2005, CD issue.
[31] Kolář, R., Kubečka, L., Jan, J., Chrastek, R.: Disparity estimation in uncalibrated stereo retina images. In: Proc. EMBEC’05, Prague 2005, CD issue.
[32] Kolář, R., Jan, J.: Detection of glaucomatous eye via color fundus images using fractal dimensions. In: Proc. 6th EURASIP Conf. Speech & Image Processing, Multimedia Communications & Services, Maribor 2007, pp. 37–40.
[33] Kolář, R., Jan, J., Kubečka, L.: Registration and fusion of the autofluorescent and infrared retinal images. Internat. J. Biomedical Imaging (2008), 513478, pp. 1–11.
[34] Kolář, R., Jan, J., Kubečka, L.: Computer support for early glaucoma diagnosis based on the fused retinal images. Scripta Medica (2006), 79, 269–276.
[35] Kolář, R., Jan, J., Jiřík, R.: Semiautomatic detection and evaluation of autofluorescent areas. In: Proc. IEEE–EMBC 2007, Lyon 2007, pp. 3327–3330.
[36] Kolář, R., Laemmer, R., Jan, J., Mardin, C.: The segmentation of zones with increased autofluorescence in the junctional zone of parapapillary atrophy. Physiological Measurement (2009), 30, 505–516.
[37] Kubečka, L., Jan, J.: Retinal image fusion and registration. In: Proc. EMBEC’05, Prague 2005, CD issue.
[38] Kubečka, L., Skokan, M., Jan, J.: Optimization methods for registration of multimodal images of retina. In: Proc. IEEE-EMBC, Cancun 2003, pp. 599–601.
[39] Kubečka, L., Jan, J.: Registration of bimodal retinal images – improving modifications. In: Proc. 26th IEEE EMBC, San Francisco 2004, pp. 1695–1698.
[40] Kubečka, L., Jan, J., Kolář, R.: Retrospective illumination correction of retinal images. J. Biomedical Imaging (2010), 5, 201–210.
[41] Kubečka, L., Jan, J., Kolář, R., Jiřík, R.: Improving quality of autofluorescence images using non-rigid image registration. In: Proc. EUSIPCO 2006, Florence 2006, CD issue, pp. 357–361.
[42] Kubečka, L., Jan, J., Kolář, R., Jiřík, R.: Elastic registration for auto-fluorescence image averaging. In: Proc. IEEE-EMBC 2006, New York 2006, CD issue, pp. 1948–1951.
[43] al., R. Laemmer et: Measurement of autofluorescence in the parapapillary atrophic zone in patients with ocular hypertension. Graefes Arch. Clin. Exp. Ophthalmol. (2007), 245, 51–58.
[44] Lalondey, M., Gagnony, L., Boucherz, M. C.: Non-recursive paired tracking for vessel extraction from retinal images. In: Proc. Vision Interface 2000, Montreal 2000, pp. 61-68.
[45] al., S. Y. Lee et: Automated quantification of retinal nerve fiber layer atrophy in fundus photograph. In: Proc. IEEE EMBC San Francisco 2004, 1, pp. 1241–1243.
[46] al., S. Z. Li et:
Markov Radnom Field Modeling in Image Analysis. Springer 2009.
MR 2493908
[47] al., R. Linde et: Reproducibility of parapapillary autofluorescence measurement in glaucoma diagnostics. In: Proc. DOG 2005, p. 482.
[48] Likar, B., Derganc, J., Pernus, F.: Segmentation-based retrospective correction of intensity non-uniformity in multispectral MR images. In: Proc. Conf. Medical Imaging: Image Processing, San Diego (M. Sonka, J. M. Fitzpatrick, eds.), Proc. SPIE 4684 (2002), pp. 1531–1540.
[49] Likar, B., Maintz, J. B., Viergever, M., Pernus, F.:
Retrospective shading correction based on entropy minimization. J. Microscopy 197 (2000), 3, 285–295.
DOI 10.1046/j.1365-2818.2000.00669.x
[50] Lois, N., Halfyard, A. S., Bird, A. C., Fitzke, F. W.:
Quantitative evaluation of fundus autofluorescence imaged in vivo in eyes with retinal disease. Br. J. Ophthalmol. 84 (2000), 741–5.
DOI 10.1136/bjo.84.7.741
[52] Maes, F.: Segmentation and Registration of Multimodal Medical Images. PhD. Thesis, Kath. Univ. Leuven 1998.
[53] Mangin, J.-F.: Entropy minimization for automatic correction of intensity nonuniformity. In: IEEE Works. MMBIA, Hilton Head Island 2000, 162–169.
[55] Muramatsu, Ch., Hayashi, Y., al., A. Sawada et:
Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma. J. Biomedical Optics 15 (2010), 1, 1–7.
DOI 10.1117/1.3322388
[56] al., R. Nayak et:
Automated diagnosis of glaucoma using digital fundus images. J. Med. Syst. 33 (2009), 337–346.
DOI 10.1007/s10916-008-9195-z
[57] al., H. Niemann et:
Towards automated diagnostic evaluation of retina images. J. Pattern Recognition and Image Analysis 16 (2006), 4, 671–676.
DOI 10.1134/S1054661806040146
[58] Niemeijer, M., Staal, J., al., B. Ginneken et: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Proc. SPIE Med. Imag., San Diego 5370 (2004), p. 648.
[59] al., J. Staal et:
Ridge-based vessel segmentation in color images of the retina. IEEE Trans. on Medical Imaging 23 (2004), 4, 501–509.
DOI 10.1109/TMI.2004.825627
[60] Odstrčilík, J., Jan, J., Gazárek, J., Kolář, R.: Improvement of vessel segmentation by matched filtering in colour retinal images. In: Proc. World Congress on Med. Physics Biomed. Engrg., Munich 2009, p. 4.
[61] Odstrčilík, J., Kolář, R., Harabis, V., Gazárek, J., Jan, J.: Retinal nerve fiber layer analysis via Markov random fields texture modelling. In: Proc. EUSIPCO 2010, Eurasip, Aalborg 2010.
[62] Perona, P., Malik, J.:
Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis Machine Intelligence 12 (1990), 629–639.
DOI 10.1109/34.56205
[63] Porter, R., Canagarajah, N.: Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEEE Proc. Vis.-Image Signal Processing 144 (1997), 3, 180–188.
[65] Skokan, M., Skoupý, A., Jan, J.: Registration of multimodal images of retina. In: Proc. 24th Conf. IEEE EMBC, Houston 2002, pp. 1094–1096.
[66] Styner, M., Brechbuehler, CH., Szekely, G., Gerig, G.:
Parametric estimate of intensity inhomogeneities applied to MRI. IEEE Trans. Med. Imag. 19 (2000), 3, 153–165.
DOI 10.1109/42.845174
[67] Tvrdík, J.: Generalized controlled random search and competing heuristic. In: Proc. 10th Int. Conf. on Soft Computing MENDEL 2004, pp. 228–33.
[68] Tvrdík, J.: Controlled random search algorithm with alternating heuristics. AUTOMA (2002), 1, 54–57.
[69] Viestenz, A., Langenbucher, A., Mardin, C. Y.: Parapapillary autofluorescence as indicator for glaucoma. Klin. Monatsbl. Augenheilkd. 223 (2006), 315–20.
[70] al., K. A. Vermeer et:
A model based method for retinal blood vessel detection. Computers in Biology and Medicine 34 (2004), 209–219.
DOI 10.1016/S0010-4825(03)00055-6
[71] Zhu, J., Liu, B., Schwartz, S. C.: General illumination correction and its application to face normalization. In: Proc. IEEE ICASSP’03 3 (2003), pp. III–133–6.