Previous |  Up |  Next

Article

Keywords:
Blind source separation; probability distribution; score function; autoregressive random processes; audio signal processing; electroencephalogram; artifact rejection
Summary:
This paper presents a survey of recent successful algorithms for blind separation of determined instantaneous linear mixtures of independent sources such as natural speech or biomedical signals. These algorithms rely either on non-Gaussianity, nonstationarity, spectral diversity, or on a combination of them. Performance of the algorithms will be demonstrated on separation of a linear instantaneous mixture of audio signals (music, speech) and on artifact removal in electroencephalogram (EEG).
References:
[1] Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second-order statistics. IEEE Trans. Signal Processing 45 (1997), 434–444. DOI 10.1109/78.554307
[2] Boscolo, R., Pan, H., Roychowdhury, V. P.: Independent component analysis based on nonparametric density estimation. IEEE Trans. Neural Networks 15 (2004), 55–65. DOI 10.1109/TNN.2003.820667
[3] Cardoso, J.-F.: Blind signal separation: statistical principles. Proc. IEEE 90 (1998), 2009–2026.
[4] Cardoso, J.-F., Pham, D. T.: Separation of non stationary sources. Algorithms and performance., In: Independent Components Analysis: Principles and Practice (S. J. Roberts and R. M. Everson, eds.), Cambridge University Press 2001, pp. 158–180.
[5] Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. Wadsworth, 1983. Zbl 0532.65094
[6] Cruces, S., Cichocki, A., Lathauwer, L. De: Thin QR and SVD factorizations for simultaneous blind signal extraction. In: Proc. European Signal Processing Conference (EUSIPCO), Vienna 2004, pp. 217–220.
[7] Dégerine, S., Zaïdi, A.: Separation of an instantaneous mixture of Gaussian autoregressive sources by the exact maximum likelihood approach. IEEE Trans. Signal Processing 52 (2004), 1492–1512. DOI 10.1109/TSP.2004.827195 | MR 2068987
[8] Delorme, A., Sejnowski, T., Makeig, S.: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34 (2007) 1443–1449. DOI 10.1016/j.neuroimage.2006.11.004
[9] Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9 (1997), 1483–1492. DOI 10.1162/neco.1997.9.7.1483
[10] Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, 2001.
[11] James, C. J., Hesse, C. W.: Independent component analysis for biomedical signals. Physiol. Meas. 26 (2005), R15–R39. DOI 10.1088/0967-3334/26/1/R02
[12] Koldovský, Z., Tichavský, P., Oja, E.: Efficient variant of algorithm FastICA for independent component analysis attaining the Cramér–Rao lower bound. IEEE Trans. Neural Networks 17 (2006), 1265–1277. DOI 10.1109/TNN.2006.875991
[13] Koldovský, Z., Málek, J., Tichavský, P., Deville, Y., Hosseini, S.: Blind separation of piecewise stationary nonGaussian Sources. Signal Process. 89 (2009), 2570–2584.
[14] Koldovský, Z., Tichavský, P.: A comparison of independent component and independent subspace analysis algorithms. In: Proc. European Signal Processing Conference (EUSIPCO), Glasgow 2009, pp. 1447–1451.
[15] Koldovský, Z., Tichavský, P.: Time-domain blind separation of audio sources based on a complete ICA decomposition of an observation space. IEEE Trans. Audio, Speech and Language Processing 19 (2011), 406–416. DOI 10.1109/TASL.2010.2049411
[16] Learned-Miller, E. G., III, J. W. Fisher: ICA using spacings estimates of entropy. J. Machine Learning Research 4 (2004), 1271–1295. MR 2103630
[17] Lee, Te-Won: Independent Component Analysis, Theory and Applications. Kluwer Academic Publishers, 1998. Zbl 0910.94004
[18] Pham, D. T., Garat, P.: Blind separation of mixture of independent sources through a quasi-maximum likelihood approach, IEEE Trans. Signal Process. 45 (1997), 1712–1725. DOI 10.1109/78.599941
[19] Pham, D.-T.: Joint approximate diagonalization of positive definite Hermitian matrices. SIAM J. Matrix Anal. Appl. 22 (2001), 1136–1152. DOI 10.1137/S089547980035689X | MR 1824062 | Zbl 1008.65020
[20] Pham, D.-T.: Blind separation of instantaneous mixture of sources via the Gaussian mutual information criterion. Signal Process. 81 (2001), 855–870. DOI 10.1016/S0165-1684(00)00260-7 | Zbl 1098.94576
[21] Pham, D.-T., Cardoso, J.-F.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Trans. Signal Process. 49 (2001), 1837–1848. DOI 10.1109/78.942614 | MR 1852133
[22] Tichavský, P., Koldovský, Z., Oja, E.: Performance analysis of the FastICA algorithm and Cramér-Rao bounds for linear independent component analysis. IEEE Trans. Signal Process. 54 (2006), 1189–1203. DOI 10.1109/TSP.2006.870561
[23] Tichavský, P., Koldovský, Z., Oja, E.: Corrections to “Performance analysis of the FastICA algorithm and Cramér–Rao Bounds for linear independent component analysis, TSP 04/06". IEEE Tran. Signal Process. 56 (2008), 1715–1716. DOI 10.1109/TSP.2007.910503 | MR 2516583
[24] Tichavský, P., Koldovský, Z., Oja, E.: Speed and accuracy enhancement of linear ICA techniques using rational nonlinear functions. Lecture Notes in Comput. Sci. 4666 (2007), 285–292. Zbl 1172.94493
[25] Tichavský, P., Koldovský, Z., Yeredor, A., Gomez-Herrero, G., Doron, E.: A hybrid technique for blind non-Gaussian and time-correlated sources using a multicomponent approach. IEEE Trans. Neural Networks 19 (2008), 421–430. DOI 10.1109/TNN.2007.908648
[26] Tichavský, P., Yeredor, A.: Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans. Signal Process. 57 (2009), 878–891. DOI 10.1109/TSP.2008.2009271 | MR 3027773
Partner of
EuDML logo