[1] Gordon, N., Salmond, D., Smith, A. F. M.: Novel approach to nonlinear/ non-Gaussian Bayesian state estimation. IEE Proc. F 140 (1993), 107–113, 1993.
[2] Doucet, A., Freitas, N. de, Gordon, N., eds.:
Sequential Monte Carlo Methods in Practice. Springer, 2001.
MR 1847783 |
Zbl 0967.00022
[3] Straka, O., Šimandl, M.: Sampling densities of particle filter: a survey and comparison. In: Proc. 26th American Control Conference (ACC), AACC, New York 2007, pp. 4437–4442.
[4] Šimandl, M., Straka, O.: Nonlinear estimation by particle filters and Cramér–Rao bound. In: Proc. 15th Triennial World Congress of the IFAC, Barcelona 2002, pp. 79–84.
[5] Šimandl, M., Královec, J., Tichavský, P.:
Filtering, predictive and smoothing Cramér–Rao bounds for discrete-time nonlinear dynamic filters. Automatica 37 (2001), 11, 1703–1716.
DOI 10.1016/S0005-1098(01)00136-4 |
MR 2108831
[6] Koller, D., Fratkina, R.: Using learning for approximation in stochastic processes. In: Proc. 15th Internat. Conference on Machine Learning, Morgan Kaufmann, San Francisco 1998, pp. 287–295.
[7] Fox, D.:
Adapting the sample size in particle filters through KLD-sampling. Internat. J. Robotics Research 22 (2003), 985–1003.
DOI 10.1177/0278364903022012001
[8] Soto, A.: Self adaptive particle filter. In: Proc. Internat. Joint Conference on Artificial Intelligence 2005, pp. 1398–1406.
[9] Straka, O., Šimandl, M.: Adaptive particle filter based on fixed efficient sample size. In: Proc. 14th IFAC Symposium on System Identification, Newcastle 2006.
[10] Lanz, O.: An information theoretic rule for sample size adaptation in particle filtering. In: 14th Internat. Conference on Image Analysis and Processing (ICIAP 2007), pp. 317–322.
[11] Straka, O., In, M. Šimandl. Adaptive particle filter with fixed empirical density quality.: Proc. 17th World Congress of the IFAC, 2008.
[12] Straka, O., Šimandl, M.: A survey of sample size adaptation techniques for particle filters. In: Proc. 15th Symposium on System Identification, IFAC, Saint-Malo 2009.
[13] Karlsson, R., Gustafsson, F.: Monte Carlo data association for multiple target tracking. In: IEE Workshop on Target Tracking, Eindhoven 2001.
[14] Bolic, M., Hong, S., Djuric, P. M.: Performance and complexity analysis of adaptive particle filtering for tracking applications. In: Proc. Conference on Signals, Systems and Computers, 2002.
[17] Merwe, R. van der, Wan, E. A.: Sigma-point particle filters for sequential probabilistic inference in dynamic state-space models. In: Proc. Internat.l Conference on Acoustics, Speech, and Signal Processing (ICASSP), IEEE, Hong Kong 2003, p. 4.