Previous |  Up |  Next

Article

Keywords:
time lag; extended nonlinearity; absolute stability
Summary:
The following time delay system $$ \dot {x} = Ax(t) + \sum _1^rbq_i^*x(t-\tau _i)-b\varphi (c^*x(t)) $$ is considered, where $\varphi \colon \mathbb {R}\to \mathbb {R}$ may have discontinuities, in particular at the origin. The solution is defined using the “redefined nonlinearity” concept. For such systems sliding modes are discussed and a frequency domain inequality for global asymptotic stability is given.
References:
[1] Anosov, D. V.: About the stability of equilibria of the relay systems. Russian Avtomat. i Telemekhanika 20 (1959), 135-149. MR 0104530
[2] Gelig, A. Kh.: Stability analysis of nonlinear discontinuous control systems with non-unique equilibrium state. Russian Avtomat. i Telemekhanika 25 (1964), 153-160. MR 0182485
[3] Gelig, A. Kh.: Stability of controlled systems with bounded nonlinearities. Russian Avtomat. i Telemekhanika 29 (1969), 15-22. MR 0453038 | Zbl 0209.16101
[4] Gelig, A. Kh., Leonov, G. A., Yakubovich, V. A.: Stability of Nonlinear Systems with Non-unique Equilibrium State. Nauka, Moskva, 1978 Russian; World Scientific, Singapore, 2004. English.
[5] Halanay, A.: Differential Equations. Stability. Oscillations. Time Lags. Academic Press, New York (1966). MR 0216103 | Zbl 0144.08701
[6] Halanay, A.: On the controllability of linear difference-differential systems. Math. Systems Theory Econom. 2 (1969), 329-336 (1969). DOI 10.1007/978-3-642-46196-5_16 | MR 0321566 | Zbl 0185.23601
[7] Popov, V. M.: Hyperstability of Control Systems. Editura Academiei, Bucharest & Springer, Berlin (1973). MR 0387749 | Zbl 0276.93033
[8] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems. Romanian Editura Academiei, Bucharest, 1975 improved Russian version by Nauka, Moskva, 1983. MR 0453048
[9] Răsvan, Vl., Danciu, D., Popescu, D.: Nonlinear and time delay systems for flight control. Math. Repts. 11 (2009), 359-367. MR 2656171 | Zbl 1212.34247
[10] Richard, J. P., Gouaisbaut, F., Perruquetti, W.: Sliding mode control in the presence of delay. Kybernetika 37 (2001), 277-294. MR 1859086 | Zbl 1265.93046
Partner of
EuDML logo