[1] Györi, I., Hartung, F., Turi, J.:
Preservation of stability in delay equations under delay perturbations. J. Math. Anal. Appl. 220 (1998), 290-312.
DOI 10.1006/jmaa.1997.5883 |
MR 1613964
[2] Berezansky, L., Braverman, E.:
Preservation of the exponential stability under perturbations of linear delay impulsive differential equations. Z. Anal. Anwendungen 14 (1995), 157-174.
DOI 10.4171/ZAA/668 |
MR 1327497 |
Zbl 0821.34072
[4] Azbelev, N. V., Berezansky, L., Rakhmatullina, L. F.: A linear functional-differential equation of evolution type. Differ. Equations 13 (1977), 1331-1339.
[5] Azbelev, N. V., Berezansky, L., Simonov, P. M., Chistyakov, A. V.:
The stability of linear systems with aftereffect I. Differ. Equations 23 (1987), 493-500;
Differ. Equations 27 (1991), 383-388;
Differ. Equations 27 (1991), 1165-1172;
Differ. Equations 29 (1993), 153-160.
MR 1236101
[6] Azbelev, N. V., Simonov, P. M.:
Stability of Differential Equations with Aftereffect. Stability and Control: Theory, Methods and Applications, Vol. 20. Taylor & Francis, London (2003).
MR 1965019 |
Zbl 1049.34090
[8] Györi, I., Ladas, G.:
Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford University Press, New York (1991).
MR 1168471