Previous |  Up |  Next

Article

Keywords:
spacelike submanifolds; locally symmetric Lorentz spaces
Summary:
In this note, we investigate $n$-dimensional spacelike hypersurfaces $M^n$ with $R=aH+b$ in locally symmetric Lorentz space. Two rigidity theorems are obtained for these spacelike hypersurfaces.
References:
[1] Alencar, H., do Carmo, M.: Hypersurfacs with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223–1229. DOI 10.1090/S0002-9939-1994-1172943-2 | MR 1172943
[2] Baek, J. Ok, Cheng, Q. M., Suh, Y.Jin: Complete spacelike hypersurfaces in Locally symmetric Lorentz spaces. J. Geom. Phys. 49 (2004), 231–247. DOI 10.1016/S0393-0440(03)00090-1 | MR 2077302
[3] Camargo, F. E. C., Chaves, R. M. B., Sousa, Jr., L. A. M.: Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in de Sitter space. Differential Geom. Appl. 26 (2008), 592–599. DOI 10.1016/j.difgeo.2008.04.020 | MR 2474421 | Zbl 1160.53361
[4] Cheng, Q. M., Ishikawa, S.: Space-like hypersurfaces with constant scalar curvature. Manuscripta Math. 95 (1998), 499–505. MR 1618206
[5] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195–204. DOI 10.1007/BF01425237 | MR 0431043 | Zbl 0349.53041
[6] Choi, S. M., Lyu, S. M., Suh, Y. J.: Complete spacelike hypersurfaces in a Lorentz manifolds. Math. J. Toyama Univ. 22 (1999), 499–505.
[7] Goddard, A. J.: Some remarks on the existence of space-like hypersurfaces of constant mean curvature. Math. Proc. Cambridge Philos. Soc. 82 (1977), 489–495. DOI 10.1017/S0305004100054153 | MR 0458344
[8] Liu, J. C., Sun, Z. Y.: On spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz spaces. J. Math. Anal. Appl. 364 (1) (2010), 195–203. DOI 10.1016/j.jmaa.2009.10.029 | MR 2576063 | Zbl 1188.53069
[9] Liu, X. M.: Complete space-like hypersurfaces with constant scalar curvature. Manuscripta Math. 105 (2001), 367–377. DOI 10.1007/s002290100187 | MR 1856617 | Zbl 1002.53043
[10] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207–213. DOI 10.2307/2373587 | MR 0353216 | Zbl 0302.53028
[11] Omori, H.: Isometric immersions of Riemmanian manifolds. J. Math. Soc. Japan 19 (1967), 205–214. DOI 10.2969/jmsj/01920205 | MR 0215259
[12] Suh, Y. J., Choi, Y. S., Yang, H. Y.: On spacelike hypersurfaces with constant mean curvature in a Lorentz manifold. Houston J. Math. 28 (2002), 47–70. MR 1876939
[13] Zhang, S. C., Wu, B. Q.: Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in locally symmetric Lorentz space. J. Geom. Phys. 60 (2010), 333–340. DOI 10.1016/j.geomphys.2009.10.005 | MR 2587397
[14] Zheng, Y.: On spacelike hypersurfaces in the de Sitter spaces. Ann. Global Anal. Geom. 13 (1995), 317–321. DOI 10.1007/BF00773403
[15] Zheng, Y.: Space-like hypersurfaces with constant scalar curvature in de Sitter space. Differential Geom. Appl. 6 (1996), 51–54. DOI 10.1016/0926-2245(96)00006-X | MR 1384878
Partner of
EuDML logo