Previous |  Up |  Next

Article

Title: A Pettis-type integral and applications to transition semigroups (English)
Author: Kunze, Markus
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 61
Issue: 2
Year: 2011
Pages: 437-459
Summary lang: English
.
Category: math
.
Summary: Motivated by applications to transition semigroups, we introduce the notion of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we establish a sufficient condition for integrability. We also introduce and study a class of semigroups on such dual pairs which are an abstract version of transition semigroups. Using our results, we give conditions ensuring that a semigroup consisting of kernel operators has a Laplace transform which also consists of kernel operators. We also provide conditions under which a semigroup is uniquely determined by its Laplace transform. (English)
Keyword: Pettis-type integral
Keyword: dual pairs
Keyword: Laplace transform
Keyword: transition semigroup
MSC: 46G10
MSC: 47D06
MSC: 60J35
idZBL: Zbl 1249.46044
idMR: MR2905415
DOI: 10.1007/s10587-011-0065-3
.
Date available: 2011-06-06T10:34:17Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/141545
.
Reference: [1] Arendt, W.: Approximation of degenerate semigroups.Taiwanese J. Math. 5 (2001), 327-295. Zbl 1025.47023, MR 1832168, 10.11650/twjm/1500407337
Reference: [2] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transform and Cauchy Problems. Monographs in Mathematics. Vol. 96.Birkhäuser Basel (2001). MR 1886588
Reference: [3] Arendt, W., Nikolski, N.: Vector-valued holomorphic functions revisited.Math. Z. 252 (2006), 687-689. MR 2207764, 10.1007/s00209-005-0858-x
Reference: [4] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie.Walter de Gruyter Berlin (1968). Zbl 0174.48802, MR 0239626
Reference: [5] Bonet, J., Cascales, B.: Non complete Mackey topologies on Banach spaces.Bull. Aust. Math. Soc. 81 (2010), 409-413. MR 2639854, 10.1017/S0004972709001154
Reference: [6] Cerrai, S.: A Hille-Yosida theorem for weakly continuous semigroups.Semigroup Forum 49 (1994), 349-367. MR 1293091, 10.1007/BF02573496
Reference: [7] Davis, W. J., Lindenstrauss, J.: On total nonnorming subspaces.Proc. Am. Math. Soc. 31 (1972), 109-111. Zbl 0256.46025, MR 0288560, 10.1090/S0002-9939-1972-0288560-8
Reference: [8] Diestel, J., Uhl, J. J.: Vector Measures. Mathematical Surveys and Applications. Vol. 15.Amer. Math. Soc. Providence (1977). MR 0453964
Reference: [9] Farkas, B.: Perturbations of bi-continuous semigroups on {$C_b(H)$} with applications to the Ornstein-Uhlenbeck semigroup.Semigroup Forum 68 (2004), 329-353. MR 2033232, 10.1007/s00233-002-0024-2
Reference: [10] Feller, W.: Semigroups of transformations in general weak topologies.Ann. Math. 57 (1953), 287-308. Zbl 0050.11601, MR 0054165, 10.2307/1969859
Reference: [11] Haase, M.: The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications. Vol. 169.Birkhäuser Basel (2006). MR 2244037
Reference: [12] Jacob, N.: Pseudo Differential Operators and Markov Processes. Fourier Analysis and Semigroups. Vol. I.Imperial College Press London (2001). MR 1873235
Reference: [13] Ali, S. Jaker, Chakraborty, N. D.: Pettis integration in locally convex space.Anal. Math. 23 (1997), 241-257. MR 1629973, 10.1007/BF02789840
Reference: [14] Jarchow, H.: Locally Convex Spaces.Teubner Stuttgart (1981). Zbl 0466.46001, MR 0632257
Reference: [15] Jefferies, B.: Weakly integrable semigroups on locally convex spaces.J. Funct. Anal. 66 (1986), 347-364. Zbl 0589.47043, MR 0839106, 10.1016/0022-1236(86)90063-7
Reference: [16] Jefferies, B.: The generation of weakly integrable semigroups.J. Funct. Anal. 73 (1987), 195-215. Zbl 0621.47037, MR 0890663, 10.1016/0022-1236(87)90065-6
Reference: [17] Koethe, G.: Topological Vector Spaces. Grundlagen der Mathematischen Wissenschaften in Einzeldarstellungen. Vol. 107.Springer Berlin (1969).
Reference: [18] Kühnemund, F.: A Hille-Yosida theorem for bi-continuous semigroups.Semigroup Forum 67 (2003), 205-225. MR 1987498, 10.1007/s00233-002-5000-3
Reference: [19] Kühnemund, F., Neerven, J. M. A. M. van: A Lie-Trotter product formula for Ornstein-Uhlenbeck semigroups in infinite dimensions.J. Evol. Equ. 4 (2004), 53-73. MR 2047306, 10.1007/s00028-003-0078-y
Reference: [20] Kunze, M.: Continuity and equicontinuity of semigroups on norming dual pairs.Semigroup Forum 79 (2009), 540-560. Zbl 1192.47040, MR 2564063, 10.1007/s00233-009-9174-9
Reference: [21] Lant, T., Thieme, H. R.: Markov transition functions and semigroups of measures.Semigroup Forum 74 (2007), 337-369. Zbl 1146.47030, MR 2321572, 10.1007/s00233-006-0636-z
Reference: [22] Musiał, K.: The weak Radon-Nikodym property in Banach spaces.Stud. Math. 64 (1979), 151-174. MR 0537118, 10.4064/sm-64-2-151-174
Reference: [23] Pettis, B. J.: On integration in vector spaces.Trans. Am. Math. Soc. 44 (1938), 277-304. Zbl 0019.41603, MR 1501970, 10.1090/S0002-9947-1938-1501970-8
Reference: [24] Phillips, R. S.: On one-parameter semigroups of linear transformations.Proc. Am. Math. Soc. 2 (1951), 234-237. MR 0039922, 10.1090/S0002-9939-1951-0039922-1
Reference: [25] Priola, E.: On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions.Stud. Math. 136 (1999), 271-295. Zbl 0955.47024, MR 1724248, 10.4064/sm-136-3-271-295
.

Files

Files Size Format View
CzechMathJ_61-2011-2_12.pdf 373.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo