[4] Chen, Z. X., Shon, K. H.:
On zeros and fixed points of differences of meromorphic functions. J. Math. Anal. Appl. 344-1 (2008), 373-383.
MR 2416313 |
Zbl 1144.30012
[6] Clunie, J., Eremenko, A., Rossi, J.:
On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. 47-2 (1993), 309-320.
MR 1207951 |
Zbl 0797.31002
[8] Eremenko, A., Langley, J. K., Rossi, J.:
On the zeros of meromorphic functions of the form $\sum\nolimits_{k=1}^{\infty}{a_k}/(z-z_k)$. J. Anal. Math. 62 (1994), 271-286.
DOI 10.1007/BF02835958 |
MR 1269209
[9] Gundersen, G.:
Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. 37-2 (1988), 88-104.
MR 0921748 |
Zbl 0638.30030
[11] Halburd, R. G., Korhonen, R.:
Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math. 31 (2006), 463-478.
MR 2248826 |
Zbl 1108.30022
[14] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., Tohge, K.:
Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1 (2001), 27-39.
DOI 10.1007/BF03320974 |
MR 1931600 |
Zbl 1013.39001
[17] Laine, I.:
Nevanlinna Theory and Complex Differential Equations. Berlin, W. de Gruyter (1993).
MR 1207139
[19] Yang, C. C., Yi, H. X.:
Uniqueness Theory of Meromorphic Functions. Dordrecht, Kluwer Academic Publishers Group (2003).
MR 2105668 |
Zbl 1070.30011