[2] Boussetila, N., Rebbani, F.:
Optimal regularization method for ill-posed Cauchy problems. Electron. J. Differ. Equ. 147 (2006), 1-15.
MR 2276572 |
Zbl 1112.35336
[3] Clark, G. W., Oppenheimer, S. F.:
Quasireversibility methods for non-well posed problems. Electron. J. Diff. Eqns. 1994 (1994), 1-9.
MR 1302574 |
Zbl 0811.35157
[5] Denche, M., Djezzar, S.:
A modified quasi-boundary value method for a class of abstract parabolic ill-posed problems. Bound. Value Probl. 2006, Article ID 37524 (2006), 1-8.
MR 2211398 |
Zbl 1140.34397
[6] Eldén, L., Berntsson, F., Reginska, T.:
Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput. 21 (2000), 2187-2205.
DOI 10.1137/S1064827597331394 |
MR 1762037
[11] Hào, D. N., Duc, N. Van, Sahli, H.:
A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345 (2008), 805-815.
DOI 10.1016/j.jmaa.2008.04.064 |
MR 2429181
[13] Lattès, R., Lions, J.-L.:
Méthode de Quasi-réversibilité et Applications. Dunod Paris (1967), French.
MR 0232549
[14] Long, N. T., Ding, A. Pham Ngoc:
Approximation of a parabolic nonlinear evolution equation backwards in time. Inverse Probl. 10 (1994), 905-914.
MR 1286629
[15] Mel'nikova, I. V., Filinkov, A. I.:
Abstract Cauchy problems: Three approaches. Monograph and Surveys in Pure and Applied Mathematics, Vol. 120. Chapman & Hall/CRC London-New York/Boca Raton (2001).
MR 1823612
[16] Miller, K.:
Stabilized quasi-reversibility and other nearly-best-possible methods for non-well posed problems. Sympos. non-well posed probl. logarithmic convexity. Lect. Notes Math. Vol. 316 Springer Berlin (1973), 161-176.
DOI 10.1007/BFb0069627 |
MR 0393903
[17] Payne, L. E.:
Improperly Posed Problems in Partial Differential Equations. SIAM Philadelphia (1975).
MR 0463736 |
Zbl 0302.35003
[18] Pazy, A.:
Semigroups of Linear Operators and Application to Partial Differential Equations. Springer New York (1983).
MR 0710486
[20] Showalter, R. E.:
Quasi-reversibility of first and second order parabolic evolution equations. Improp. Posed Bound. Value Probl. (Conf. Albuquerque, 1974). Res. Notes in Math., No. 1 Pitman London (1975), 76-84.
MR 0477359
[21] Tautenhahn, U., Schröter, T.:
On optimal regularization methods for the backward heat equation. Z. Anal. Anwend. 15 (1996), 475-493.
DOI 10.4171/ZAA/711 |
MR 1394439
[23] Trong, D. D., Tuan, N. H.:
Stabilized quasi-reversibility method for a class of nonlinear ill-posed problems. Electron. J. Differ. Equ. No 84 (2008).
MR 2411080 |
Zbl 1171.35485