[1] Alam, K., Saxena, K. M. L.:
Positive dependence in multivariate distributions. Comm. Statist. A 10 1183-1196.
MR 0623526 |
Zbl 0471.62045
[3] Berkes, I., Philipp, W.:
Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 19-54.
MR 0515811 |
Zbl 0392.60024
[5] Bulinski, Shashkin:
The strong invariance principles for dependent multi-indexed random variables. Dokl. Acad. Nauk 403 155-158.
MR 2161593
[6] Bulinski, Shashkin:
Strong invariance principles for dependent random fields. ISM Lect. Notes-Monograph Series Dynamics and Stochastics 48 128-143.
MR 2306195
[8] Csörgő, M., Révész, P.:
I. A new method to prove Strassen type laws of invariance principle. Z. Wahrsch. view. Gebiete 31 255-260.
DOI 10.1007/BF00532865 |
MR 0375411
[9] Csörgő, M., Révész, P.:
Strong Approximations in Probability and Statistics. Academic Press, New York.
MR 0666546
[10] Feller, W.:
An Introduction to Probability Theory and its Applications 2. 2nd ed John Wiley. New York.
MR 0088081
[12] Newman, C. M.:
Asympotic independence and limit theorems for positively and negatively dependent random variables. Inequalities in Statistics and Probability (Tong, Y. L., ed., Institute of Mathematical Statistics, Hayward, CA) 127-140.
MR 0789244
[17] Yu, H.:
A strong invariance principle for associated sequences. Ann. Probab. 24 2079-2097.
MR 1415242 |
Zbl 0879.60028