Previous |  Up |  Next

Article

Keywords:
strong invariance principle; negative association; random field; blocking technique; quantile transform
Summary:
In this paper we obtain a strong invariance principle for negatively associated random fields, under the assumptions that the field has a finite $(2+\delta )$th moment and the covariance coefficient $u(n)$ exponentially decreases to $0$. The main tools are the Berkes-Morrow multi-parameter blocking technique and the Csörgő-Révész quantile transform method.
References:
[1] Alam, K., Saxena, K. M. L.: Positive dependence in multivariate distributions. Comm. Statist. A 10 1183-1196. MR 0623526 | Zbl 0471.62045
[2] Balan, R. M.: A strong invariance principle for associated random fields. Ann. Probab. 33 823-840. DOI 10.1214/009117904000001071 | MR 2123212 | Zbl 1070.60032
[3] Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 19-54. MR 0515811 | Zbl 0392.60024
[4] Berkes, I., Morrow, G. J.: Strong invariance principles for mixing random fields. Z. Wahrsch. view. Gebiete 57 15-37. DOI 10.1007/BF00533712 | MR 0623453 | Zbl 0443.60029
[5] Bulinski, Shashkin: The strong invariance principles for dependent multi-indexed random variables. Dokl. Acad. Nauk 403 155-158. MR 2161593
[6] Bulinski, Shashkin: Strong invariance principles for dependent random fields. ISM Lect. Notes-Monograph Series Dynamics and Stochastics 48 128-143. MR 2306195
[7] Cai, G. H., Wang, J. F.: Uniform bounds in normal approximation under negatively associated random fields. Statistics and Probability Letters 79 215-222. DOI 10.1016/j.spl.2008.07.039 | MR 2483543 | Zbl 1157.60013
[8] Csörgő, M., Révész, P.: I. A new method to prove Strassen type laws of invariance principle. Z. Wahrsch. view. Gebiete 31 255-260. DOI 10.1007/BF00532865 | MR 0375411
[9] Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics. Academic Press, New York. MR 0666546
[10] Feller, W.: An Introduction to Probability Theory and its Applications 2. 2nd ed John Wiley. New York. MR 0088081
[11] Joag-Dev, K., Proschan, F.: Negative association of random variables with applications. Ann. Statist. 11 286-295. DOI 10.1214/aos/1176346079 | MR 0684886
[12] Newman, C. M.: Asympotic independence and limit theorems for positively and negatively dependent random variables. Inequalities in Statistics and Probability (Tong, Y. L., ed., Institute of Mathematical Statistics, Hayward, CA) 127-140. MR 0789244
[13] Roussas, G. G.: Asymptotic normality of random fields of positively or negatively associated processes. J. Multivariate Anal. 50 152-173. DOI 10.1006/jmva.1994.1039 | MR 1292613 | Zbl 0806.60040
[14] Shao, Q. M., Su, C.: The law of the iterated logarithm for negatively associated random variables. Stochastic Process. Appl. 83 139-148. DOI 10.1016/S0304-4149(99)00026-5 | MR 1705604
[15] Su, C., Zhao, L., Wang, Y.: Moment inequalities and weak convergence for negatively associated sequences. Sci. China Ser. A 40 172-182. DOI 10.1007/BF02874436 | MR 1451096 | Zbl 0907.60023
[16] Wichura, M. J.: Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments. Ann. Probab. 1 272-296. DOI 10.1214/aop/1176996980 | MR 0394894 | Zbl 0288.60030
[17] Yu, H.: A strong invariance principle for associated sequences. Ann. Probab. 24 2079-2097. MR 1415242 | Zbl 0879.60028
[18] Zhang, L. X.: A functional central limit theorem for asymptotically negatively dependent random fields. Acta Math. Hungar. 86 237-259. DOI 10.1023/A:1006720512467 | MR 1756175 | Zbl 0964.60035
[19] Zhang, L. X.: The weak convergence for functions of negatively associated random variables. J. Multivariate Anal. 78 272-298. DOI 10.1006/jmva.2000.1949 | MR 1859759 | Zbl 0989.60033
[20] Zhang, L. X., Wen, J. W.: A weak convergence for negatively associated fields. Statist. Probab. Lett. 53 259-267. DOI 10.1016/S0167-7152(01)00021-9 | MR 1841627 | Zbl 0994.60026
Partner of
EuDML logo