[2] Arazy, J., Upmeier, H.:
Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211.
MR 1943284
[3] Arazy, J., Upmeier, H.:
Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181.
MR 1984098 |
Zbl 1150.43302
[4] Arnal, D., Cahen, M., Gutt, S.:
Exponential and holomorphic discrete series. Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227.
MR 1022747 |
Zbl 0697.22010
[7] Berezin, F. A.:
Quantization. Math. USSR–Izv. 8 (1974), 1109–1165, Russian.
Zbl 0312.53049
[8] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR–Izv. 9 (1975), 341–379.
[9] Brif, C., Mann, A.:
Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries. Phys. Rev. A 59 (2) (1999), 971–987.
DOI 10.1103/PhysRevA.59.971 |
MR 1679730
[10] Cahen, B.:
Contraction de $SU(1,1)$ vers le groupe de Heisenberg. Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43.
MR 2143420 |
Zbl 1074.22005
[12] Cahen, B.:
Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84.
MR 2549798 |
Zbl 1183.22006
[13] Cahen, B.:
Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310.
MR 2572131 |
Zbl 1185.22007
[14] Cahen, B.:
Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311.
MR 2682458
[17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.:
Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), 901–933.
DOI 10.1088/0305-4470/23/6/015
[19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.:
Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31 (1990), 2664–2671.
DOI 10.1063/1.528967 |
MR 1075750
[21] Gracia–Bondìa, J. M.:
Generalized Moyal quantization on homogeneous symplectic spaces. Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114.
MR 1187280
[23] Helgason, S.:
Differential geometry, Lie groups and symmetric spaces. Grad. Stud. Math. 34 (2001).
MR 1834454 |
Zbl 0993.53002
[25] Hua, L. K.:
Harmonic analysis of functions of several complex variables in the classical domains. American Mathematical Society, Providence, R.I., 1963.
MR 0171936
[27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples. Princeton Math. Ser. 36 (1986).
[28] Moore, C. C.:
Compactifications of symmetric spaces II: The Cartan domains. Amer. J. Math. 86 (2) (1964), 358–378.
DOI 10.2307/2373170 |
MR 0161943
[29] Neeb, K.–H.:
Holomorphy and Convexity in Lie Theory. de Gruyter Exp. Math. 28 (2000), xxii+778 pp.
MR 1740617
[30] Nomura, T.:
Berezin transforms and group representations. J. Lie Theory 8 (1998), 433–440.
MR 1650386 |
Zbl 0919.43008
[33] Peetre, J., Zhang, G.:
A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math. 43 (1992), 273–301.
MR 1252736
[34] Satake, I.:
Algebraic structures of symmetric domains. Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971.
MR 0591460
[35] Stratonovich, R. L.:
On distributions in representation space. Soviet Physics JETP 4 (1957), 891–898.
MR 0088173
[37] Varadarajan, V. S.:
Lie groups, Lie algebras and their representations. Grad. Texts in Math. 102 (1984), xiii+430 pp.
MR 0746308 |
Zbl 0955.22500