Previous |  Up |  Next

Article

Keywords:
Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states
Summary:
Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$.
References:
[1] Ali, S. T., Englis, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (4) (2005), 391–490. DOI 10.1142/S0129055X05002376 | MR 2151954 | Zbl 1075.81038
[2] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains. Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
[3] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains. Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. MR 1984098 | Zbl 1150.43302
[4] Arnal, D., Cahen, M., Gutt, S.: Exponential and holomorphic discrete series. Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. MR 1022747 | Zbl 0697.22010
[5] Arratia, O., Del Olmo, M. A.: Moyal quantization on the cylinder. Rep. Math. Phys. 40 (1997), 149–157. DOI 10.1016/S0034-4877(97)85911-3 | MR 1614685 | Zbl 0904.58022
[6] Ballesteros, A., Gadella, M., Del Olmo, M. A.: Moyal quantization of $2+1$–dimensional Galilean systems. J. Math. Phys. 33 (1992), 3379–3386. DOI 10.1063/1.529939 | MR 1182909 | Zbl 0788.22025
[7] Berezin, F. A.: Quantization. Math. USSR–Izv. 8 (1974), 1109–1165, Russian. Zbl 0312.53049
[8] Berezin, F. A.: Quantization in complex symmetric domains. Math. USSR–Izv. 9 (1975), 341–379.
[9] Brif, C., Mann, A.: Phase–space formulation of quantum mechanics and quantum–state reconstruction for physical systems with Lie–group symmetries. Phys. Rev. A 59 (2) (1999), 971–987. DOI 10.1103/PhysRevA.59.971 | MR 1679730
[10] Cahen, B.: Contraction de $SU(1,1)$ vers le groupe de Heisenberg. Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. MR 2143420 | Zbl 1074.22005
[11] Cahen, B.: Weyl quantization for semidirect products. Differential Geom. Appl. 25 (2007), 177–190. DOI 10.1016/j.difgeo.2006.08.005 | MR 2311733 | Zbl 1117.81087
[12] Cahen, B.: Berezin quantization on generalized flag manifolds. Math. Scand. 105 (2009), 66–84. MR 2549798 | Zbl 1183.22006
[13] Cahen, B.: Contraction of discrete series via Berezin quantization. J. Lie Theory 19 (2009), 291–310. MR 2572131 | Zbl 1185.22007
[14] Cahen, B.: Berezin quantization for discrete series. Beiträge Algebra Geom. 51 (2010), 301–311. MR 2682458
[15] Cahen, B.: Stratonovich–Weyl correspondence for compact semisimple Lie groups. Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. DOI 10.1007/s12215-010-0026-y | MR 2745515 | Zbl 1218.22008
[16] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds IV. Lett. Math. Phys. 34 (1995), 159–168. DOI 10.1007/BF00739094 | MR 1335583
[17] Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C.: Relativistic quantum kinematics in the Moyal representation. J. Phys. A 23 (1990), 901–933. DOI 10.1088/0305-4470/23/6/015
[18] Davidson, M., Òlafsson, G., Zhang, G.: Laplace and Segal–Bargmann transforms on Hermitian symmetric spaces and orthogonal polynomials. J. Funct. Anal. 204 (2003), 157–195. DOI 10.1016/S0022-1236(03)00101-0 | MR 2004748 | Zbl 1035.32014
[19] Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C.: Moyal quantization with compact symmetry groups and noncommutative analysis. J. Math. Phys. 31 (1990), 2664–2671. DOI 10.1063/1.528967 | MR 1075750
[20] Folland, B.: Harmonic Analysis in Phase Space. Princeton Univ. Press, 1989. MR 0983366 | Zbl 0682.43001
[21] Gracia–Bondìa, J. M.: Generalized Moyal quantization on homogeneous symplectic spaces. Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. MR 1187280
[22] Gracia–Bondìa, J. M., Vàrilly, J. C.: The Moyal representation for spin. Ann. Physics 190 (1989), 107–148. DOI 10.1016/0003-4916(89)90262-5 | MR 0994048
[23] Helgason, S.: Differential geometry, Lie groups and symmetric spaces. Grad. Stud. Math. 34 (2001). MR 1834454 | Zbl 0993.53002
[24] Herb, R. A., Wolf, J. A.: Wave packets for the relative discrete series I. The holomorphic case. J. Funct. Anal. 73 (1987), 1–37. DOI 10.1016/0022-1236(87)90057-7 | MR 0890655 | Zbl 0625.22010
[25] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains. American Mathematical Society, Providence, R.I., 1963. MR 0171936
[26] Kirillov, A. A.: Lectures on the orbit method. Grad. Stud. Math. 64 (2004). MR 2069175 | Zbl 1229.22003
[27] Knapp, A. W.: Representation theory of semi–simple groups. An overview based on examples. Princeton Math. Ser. 36 (1986).
[28] Moore, C. C.: Compactifications of symmetric spaces II: The Cartan domains. Amer. J. Math. 86 (2) (1964), 358–378. DOI 10.2307/2373170 | MR 0161943
[29] Neeb, K.–H.: Holomorphy and Convexity in Lie Theory. de Gruyter Exp. Math. 28 (2000), xxii+778 pp. MR 1740617
[30] Nomura, T.: Berezin transforms and group representations. J. Lie Theory 8 (1998), 433–440. MR 1650386 | Zbl 0919.43008
[31] Oliveira, M. P. De: Some formulas for the canonical Kernel function. Geom. Dedicata 86 (2001), 227–247. DOI 10.1023/A:1011915708964 | MR 1856428 | Zbl 0996.32011
[32] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces. Indiana Univ. Math. J. 43 (2) (1994), 551–583. DOI 10.1512/iumj.1994.43.43023 | MR 1291529
[33] Peetre, J., Zhang, G.: A weighted Plancherel formula III. The case of a hyperbolic matrix ball. Collect. Math. 43 (1992), 273–301. MR 1252736
[34] Satake, I.: Algebraic structures of symmetric domains. Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. MR 0591460
[35] Stratonovich, R. L.: On distributions in representation space. Soviet Physics JETP 4 (1957), 891–898. MR 0088173
[36] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators. Comm. Math. Phys. 164 (3) (1994), 563–597. DOI 10.1007/BF02101491 | MR 1291245 | Zbl 0843.32019
[37] Varadarajan, V. S.: Lie groups, Lie algebras and their representations. Grad. Texts in Math. 102 (1984), xiii+430 pp. MR 0746308 | Zbl 0955.22500
[38] Wildberger, N. J.: On the Fourier transform of a compact semisimple Lie group. J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. DOI 10.1017/S1446788700034741 | MR 1250994 | Zbl 0842.22015
[39] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces. Manuscripta Math. 97 (1998), 371–388. DOI 10.1007/s002290050109 | MR 1654800 | Zbl 0920.22008
Partner of
EuDML logo