Previous |  Up |  Next

Article

Keywords:
fixed point theorems; Henstock-Kurzweil-Pettis integral; Volterra equation; measure of weak noncompactness
Summary:
In this paper we examine the set of weakly continuous solutions for a Volterra integral equation in Henstock-Kurzweil-Pettis integrability settings. Our result extends those obtained in several kinds of integrability settings. Besides, we prove some new fixed point theorems for function spaces relative to the weak topology which are basic in our considerations and comprise the theory of differential and integral equations in Banach spaces.
References:
[1] Agarwal R., O'Regan D., Sikorska-Nowak A.: The set of solutions of integrodifferential equations and the Henstock-Kurzweil-Pettis integral in Banach spaces. Bull. Austral. Math. Soc. 78 (2008), 507–522. DOI 10.1017/S0004972708000944 | MR 2472285
[2] Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis. third edition, Springer, Berlin, 2006. MR 2378491 | Zbl 1156.46001
[3] Ben Amar A., Mnif M.: Leray-Schauder alternatives for weakly sequentially continuous mappings and application to transport equation. Math. Methods Appl. Sci. 33 (2010), no. 1, 80–90. MR 2591226 | Zbl 1193.47056
[4] Bugajewski D.: On the existence of weak solutions of integral equations in Banach spaces. Comment. Math. Univ. Carolin. 35 (1994), no. 1, 35–41. MR 1292580 | Zbl 0816.45012
[5] Chew T.S., Flordeliza F.: On $x'=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. MR 1108065 | Zbl 0733.34004
[6] Cichoń M., Kubiaczyk I., Sikorska A.: The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem. Czechoslovak. Math. J. 54 (129) (2004), 279–289. DOI 10.1023/B:CMAJ.0000042368.51882.ab | MR 2059250
[7] Cichoń M.: Weak solutions of differential equations in Banach spaces. Discuss. Math. Differential Incl. 15 (1995), 5–14. MR 1344523
[8] Cichoń M., Kubiaczyk I.: On the set of solutions of the Cauchy problem in Banach spaces. Arch. Math. (Basel) 63 (1994), 251–257. DOI 10.1007/BF01189827 | MR 1287254
[9] Cramer E., Lakshmikantham V., Mitchell A.R.: On the existence of weak solution of differential equations in nonreflexive Banach spaces. Nonlinear Anal. 2 (1978), 169–177. MR 0512280
[10] DeBlasi F.S.: On a property of the unit sphere in Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie (NS) 21 (1977), 259–262. MR 0482402
[11] Diestel J., Uhl J.J.: Vector Measures. Mathematical Surveys, 15, American Mathematical Society, Providence, R.I., 1977. MR 0453964 | Zbl 0521.46035
[12] Di Piazza L.: Kurzweil-Henstock type integration on Banach spaces. Real Anal. Exchange 29 (2003/04), no. 2, 543–555. MR 2083796 | Zbl 1083.28007
[13] Dugundji J.: Topology. Allyn and Bacon, Inc., Boston, 1966. MR 0193606 | Zbl 0397.54003
[14] Federson M., Bianconi R.: Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417. MR 1758896 | Zbl 1015.45001
[15] Federson M., Táboas P.: Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. 50 (1998), 389–407. DOI 10.1016/S0362-546X(01)00769-6 | MR 1906469
[16] Gamez J.L., Mendoza J.: On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. MR 1623348 | Zbl 0971.28009
[17] Gordon R.A.: Rienmann integration in Banach spaces. Rocky Mountain J. Math. (21) (1991), no. 3, 923–949. DOI 10.1216/rmjm/1181072923 | MR 1138145
[18] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron and Henstock. Graduate Studies in Mathematics, 4, American Mathematical Society, Providence, RI, 1994. MR 1288751 | Zbl 0807.26004
[19] Kelley J.: General Topology. D. Van Nostrad Co., Inc., Toronto-New York-London, 1955. MR 0070144 | Zbl 0518.54001
[20] Kubiaczyk I., Szufla S.: Kenser's theorem for weak solutions of ordinary differential equations in Banach spaces. Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 99–103. MR 0710975
[21] Kubiaczyk I.: On the existence of solutions of differential equations in Banach spaces. Bull. Polish Acad. Sci. Math. 33 (1985), 607–614. MR 0849409 | Zbl 0607.34055
[22] Kurtz D.S., Swartz C.W.: Theories of Integration: The Integrals of Riemann, Lebesgue, Henstock-Kurzweil, and Mcshane. World Scientific, Singapore, 2004. MR 2081182 | Zbl 1072.26005
[23] Martin R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley-Interscience, New York-London-Sydney, 1976. MR 0492671 | Zbl 0333.47023
[24] Mitchell A.R., Smith C.: An existence theorem for weak solutions of differential equations in Banach spaces. in Nonlinear Equations in Abstract Spaces (Proc. Internat. Sympos., Univ. Texas, Arlington, Tex, 1977), pp. 387–403, Academic Press, New York, 1978. MR 0502554 | Zbl 0452.34054
[25] Lakshmikantham V., Leela S.: Nonlinear Differential Equations in Abstract Spaces. Pergamon Press, Oxford-New York, 1981. MR 0616449 | Zbl 0456.34002
[26] Lee P.Y.: Lanzhou Lectures on Henstock Integration. Series in Real Analysis, 2, World Scientific, Teaneck, NJ, 1989. MR 1050957 | Zbl 0699.26004
[27] Liu L., Guo F., Wu C., Wu Y.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309 (2005), 638–649. DOI 10.1016/j.jmaa.2004.10.069 | MR 2154141 | Zbl 1080.45005
[28] O'Regan D.: Operator equations in Banach spaces relative to the weak topology. Arch. Math. (Basel) 71 (1998), 123–136. DOI 10.1007/s000130050243 | MR 1631480 | Zbl 0918.47053
[29] Rudin W.: Functional Analysis. 2nd edition, McGraw-Hill, New York, 1991. MR 1157815 | Zbl 0867.46001
[30] Satco B.: A Komlós-type theorem for the set-valued Henstock-Kurzweil-Pettis integrals and applications. Czechoslovak Math. J. 56(131) (2006), 1029–1047. DOI 10.1007/s10587-006-0078-5 | MR 2261675
[31] Satco B.: Volterra integral inclusions via Henstock-Kurzweil-Pettis integral. Discuss. Math. Differ. Incl. Control Optim. 26 (2006), 87–101. DOI 10.7151/dmdico.1066 | MR 2330782 | Zbl 1131.45001
[32] Satco B.: Existence results for Urysohn integral inclusions involving the Henstock integral. J. Math. Anal. Appl. 336 (2007), 44–53. DOI 10.1016/j.jmaa.2007.02.050 | MR 2348489 | Zbl 1123.45004
[33] Schwabik S.: The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882. MR 1222306 | Zbl 0784.34006
[34] Schwabik S., Guoju Y.: Topics in Banach Space Integration. World Scientific, Hackensack, NJ, 2005. MR 2167754 | Zbl 1088.28008
[35] Sikorska A.: Existence theory for nonlinear Volterra integral and differential equations. J. Inequal. Appl. 6 (3) (2001), 325–338. MR 1889019 | Zbl 0992.45006
[36] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals. Demonstratio Math. 35 (2002), no. 1, 49–60. MR 1883943 | Zbl 1011.34066
[37] Sikorska-Nowak A.: On the existence of solutions of nonlinear integral equations in Banach spaces and Henstock-Kurzweil integrals. Ann. Polon. Math. 83 (2004), no. 3,257–267. DOI 10.4064/ap83-3-7 | MR 2111712 | Zbl 1101.45006
[38] Sikorska-Nowak A.: The existence theory for the differential equation $x^{(m)}t=f(t,x)$ in Banach spaces and Henstock-Kurzweil integral. Demonstratio Math. 40 (2007), no. 1, 115–124. MR 2330370 | Zbl 1128.34037
[39] Sikorska-Nowak A.: Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals. Discuss. Math. Differ. Incl. Control Optim. 27 (2007), 315–327. DOI 10.7151/dmdico.1087 | MR 2413816 | Zbl 1149.34053
[40] Sikorska-Nowak A.: Existence of solutions of nonlinear integral equations and Henstock-Kurzweil integrals. Comment. Math. Prace Mat. 47 (2007), no. 2, 227–238. MR 2377959 | Zbl 1178.45016
[41] Sikorska-Nowak A.: Existence theory for integrodifferential equations and Henstock-Kurzweil integral in Banach spaces. J. Appl. Math. 2007, article ID 31572, 12 pp. MR 2317885 | Zbl 1148.26010
[42] Sikorska-Nowak A.: Nonlinear integral equations in Banach spaces and Henstock-Kurzweil-Pettis integrals. Dynam. Systems Appl. 17 (2008), 97–107. MR 2433893 | Zbl 1154.45011
[43] Szufla S.: Kneser's theorem for weak solutions of ordinary differential equations in reflexive Banach spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 407–413. MR 0492684 | Zbl 0384.34039
[44] Szufla S.: Sets of fixed points of nonlinear mappings in functions spaces. Funkcial. Ekvac. 22 (1979), 121–126. MR 0551256
[45] Szufla S.: On the application of measure of noncompactness to existence theorems. Rend. Sem. Mat. Univ. Padova 75 (1986), 1–14. MR 0847653 | Zbl 0589.45007
[46] Szufla S.: On the Kneser-Hukuhara property for integral equations in locally convex spaces. Bull. Austral. Math. Soc. 36 (1987), 353–360. DOI 10.1017/S0004972700003646 | MR 0923817 | Zbl 0619.45003
Partner of
EuDML logo