Previous |  Up |  Next

Article

Keywords:
fuzzy random variable; fuzzy stochastic process; fuzzy stochastic Lebesgue–Aumann integral; fuzzy stochastic Itô integral; stochastic fuzzy differential equation; stochastic fuzzy integral equation
Summary:
In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy differential equations driven by Brownian motion. The continuous dependence on initial condition and stability properties are also established. As an example of application we use some stochastic fuzzy differential equation in a model of population dynamics.
References:
[1] Aumann, R. J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12 (1965), 1–12. DOI 10.1016/0022-247X(65)90049-1 | MR 0185073 | Zbl 0163.06301
[2] Colubi, A., Domínguez-Menchero, J. S., López-Díaz, M., Ralescu, D. A.: A $D_E[0,1]$ representation of random upper semicontinuous functions. Proc. Amer. Math. Soc. 130 (2002) 3237–3242. DOI 10.1090/S0002-9939-02-06429-8 | MR 1913001 | Zbl 1005.28003
[3] Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore 1994. MR 1337027 | Zbl 0873.54019
[4] Fei, W.: Existence and uniqueness of solution for fuzzy random differential equations with non-Lipschitz coefficients. Inform. Sci. 177 (2007) 4329–4337. DOI 10.1016/j.ins.2007.03.004 | MR 2349040 | Zbl 1129.60063
[5] Feng, Y.: Fuzzy stochastic differential systems. Fuzzy Sets Syst. 115 (2000), 351–363. MR 1781454 | Zbl 0964.60068
[6] Hiai, F., Umegaki, H.: Integrals, conditional expectation, and martingales of multivalued functions. J. Multivar. Anal. 7 (1977), 149–182. DOI 10.1016/0047-259X(77)90037-9 | MR 0507504
[7] Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Boston 1997. MR 1485775 | Zbl 0887.47001
[8] Kaleva, O.: Fuzzy differential equations. Fuzzy Sets Syst. 24 (1987), 301–317. MR 0919058 | Zbl 0646.34019
[9] Kim, J. H.: On fuzzy stochastic differential equations. J. Korean Math. Soc. 42 (2005), 153–169. DOI 10.4134/JKMS.2005.42.1.153 | MR 2106287 | Zbl 1071.60060
[10] Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer Academic Publishers, Dordrecht 1991. MR 1135796
[11] Lakshmikantham, V., Mohapatra, R. N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London 2003. MR 2052737 | Zbl 1072.34001
[12] Li, Sh., Ren, A.: Representation theorems, set-valued and fuzzy set-valued Itô integral. Fuzzy Sets Syst. 158 (2007), 949–962. MR 2321701 | Zbl 1119.60039
[13] Malinowski, M.,T.: On random fuzzy differential equations. Fuzzy Sets Syst. 160 (2009), 3152–3165. MR 2567099 | Zbl 1184.34011
[14] Negoita, C. V., Ralescu, D. A.: Applications of Fuzzy Sets to System Analysis. Wiley, New York 1975. MR 0490082
[15] Ogura, Y.: On stochastic differential equations with fuzzy set coefficients. In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 263–270.
[16] Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer Verlag, Berlin 2003. MR 0804391 | Zbl 1025.60026
[17] Protter, Ph.: Stochastic Integration and Differential Equations: A New Approach. Springer Verlag, New York 1990. MR 1037262 | Zbl 0694.60047
[18] Puri, M. L., Ralescu, D. A.: Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), 552–558. DOI 10.1016/0022-247X(83)90169-5 | MR 0690888 | Zbl 0528.54009
[19] Puri, M. L., Ralescu, D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 409–422. DOI 10.1016/0022-247X(86)90093-4 | MR 0833596 | Zbl 0605.60038
[20] Stojaković, M.: Fuzzy conditional expectation. Fuzzy Sets Syst. 52 (1992), 53–60. MR 1195201
[21] Zhang, J.: Set-valued stochastic integrals with respect to a real valued martingale. In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 253–259.
Partner of
EuDML logo