[3] Diamond, P., Kloeden, P.:
Metric Spaces of Fuzzy Sets: Theory and Applications. World Scientific, Singapore 1994.
MR 1337027 |
Zbl 0873.54019
[7] Hu, S., Papageorgiou, N.:
Handbook of Multivalued Analysis, Volume I: Theory. Kluwer Academic Publishers, Boston 1997.
MR 1485775 |
Zbl 0887.47001
[10] Kisielewicz, M.:
Differential Inclusions and Optimal Control. Kluwer Academic Publishers, Dordrecht 1991.
MR 1135796
[11] Lakshmikantham, V., Mohapatra, R. N.:
Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, London 2003.
MR 2052737 |
Zbl 1072.34001
[12] Li, Sh., Ren, A.:
Representation theorems, set-valued and fuzzy set-valued Itô integral. Fuzzy Sets Syst. 158 (2007), 949–962.
MR 2321701 |
Zbl 1119.60039
[13] Malinowski, M.,T.:
On random fuzzy differential equations. Fuzzy Sets Syst. 160 (2009), 3152–3165.
MR 2567099 |
Zbl 1184.34011
[14] Negoita, C. V., Ralescu, D. A.:
Applications of Fuzzy Sets to System Analysis. Wiley, New York 1975.
MR 0490082
[15] Ogura, Y.: On stochastic differential equations with fuzzy set coefficients. In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 263–270.
[16] Øksendal, B.:
Stochastic Differential Equations: An Introduction with Applications. Springer Verlag, Berlin 2003.
MR 0804391 |
Zbl 1025.60026
[17] Protter, Ph.:
Stochastic Integration and Differential Equations: A New Approach. Springer Verlag, New York 1990.
MR 1037262 |
Zbl 0694.60047
[20] Stojaković, M.:
Fuzzy conditional expectation. Fuzzy Sets Syst. 52 (1992), 53–60.
MR 1195201
[21] Zhang, J.: Set-valued stochastic integrals with respect to a real valued martingale. In: Soft Methods for Handling Variability and Imprecision (D. Dubois et al., eds.), Springer, Berlin 2008, pp. 253–259.